University of Mumbai QUTION BANK

Examination: BE Semester VIII

Course Code: ECC801 and Course Name: RF Design

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The constant image impedance is obtained using
Option A:	Constant K T sections
Option B:	Constant K Pi sections
Option C:	m-derived T sections
Option D:	m-derived Pi sections
2.	The stability factors, $\mu 1$ for transistor1 is 1.25 and $\mu 2$ of transistor2 is 1.9.
Option A:	Transistor 1 is unstable
Option B:	Transistor 2 is unstable
Option C:	Transistor 1 is more stable than transistor 2
Option D:	Transistor 2 is more stable than transistor 1
3.	In the single stub tuning network, the length of the short circuited stub is 0.095λ .
	What length of stub would be required if it would be an open circuited stub?
Option A:	0.095λ
Option B:	0.345λ
Option C:	0.155λ
Option D:	Zero
4.	For the Maximally flat filter, for cutoff frequency of 2 GHz, impedance of 50, and at least 15 dB insertion loss at 3 GHz. What is the order of the filter?
Option A:	3
Option B:	4
Option C:	5
Option D:	7
5.	The Intermodulation distortion in diode ring mixers can be reduced
Option A:	By using resistance in parallel to each diode
Option B:	By using resistance in series to each diode
Option C:	By removing resistance from mixer circuits
Option D:	by using more number of diodes
6.	In PLL based synthesizers, coarse steering signal is generated to
Option A:	Reduce frequency
Option B:	Reduce response time
Option C:	to reduce bandwidth
Option D:	to reduce frequency resolution
/.	The speed of DAC converter
Option A:	Limits the high frequency performance of the synthesizer

Option B:	Limits the loop gain
Option C:	Limits the resolution
Option D:	does not affect frequency
8.	The grounded conductor for safety should have a resistance of
Option A:	100 Ω
Option B:	10Ω
Option C:	1Ω
Option D:	0.1 Ω
9.	Differential amplifiers are useful in EMI control as
Option A:	They have high input impedance
Option B:	They have high gain
Option C:	They have large common mode rejection Ratio
Option D:	They have limited bandwidth
10.	Apertures in metallic enclosure act like
Option A:	Paths for air passage from outside to inside
Option B:	Secondary antenna for radiating EMI signals
Option C:	Break in current flow paths
Option D:	Visual path for examining inside activity
11	The two methods of RF filter design are .
Option A:	Image prototype method and insertion gain method
Option B:	Image prototype method and insertion loss method
Option C:	Image parameter method and insertion gain method
Option D:	Image parameter method and insertion loss method
12.	The two necessary and sufficient conditions for a transistor to be unconditionally
	stable are
Option A:	$K > 1, \Delta > 1$
Option B:	$K > 1, \Delta < 1$
Option C:	$K < 1, \Delta > 1$
Option D:	$ \mathbf{K} < 1, \Delta < 1$
10	
13.	Une port negative resistance oscillator for steady state oscillation has
Option A:	$\frac{1}{L} \prod_{i=1}^{n} \frac{1}{1}$
Option B:	$\frac{ \mathbf{L} /\mathbf{I} \mathbf{n}=\mathbf{I} }{ \mathbf{L} + \mathbf{E} \mathbf{n} =1}$
Option C:	$I_L + I_{III} = I$
Option D:	$1_{L} - 1 m = 1$
14	In Indirect frequency synthesizer, the output frequency f is equal to
Ontion A:	In manual the quency synthesizer, the output frequency I_0 is equal to
Option R.	N*fr (fr is reference frequency)
Option C:	fr + N (fr is reference frequency)
Option D	fr - N (fr is reference frequency)
Option D.	
15	The mechanism that enables electromagnetic energy to be created in an electronic
	device and coupled to its AC power cord is known as
Option A:	Radiated Emission (RE)

Option B:	Radiated Susceptibility (RS)
Option C:	Conducted Emission (CE)
Option D:	Conducted Susceptibility (CS)
16.	The outer surface of the shield has to be to avoid electromagnetic energy
	leakage through the shield.
Option A:	Covered with insulators
Option B:	Kept in open environment
Option C:	Placed in isolation
Option D:	Grounded
1	
17.	The 'm' value of the terminating sections in composite filter is .
Option A:	0.12
Option B:	0.3
Option C:	0.6
Option D:	0.9
18.	If a transistor has the following S parameters
	$S_{11} = 0.5 < -90, S_{12} = 0, S_{21} = 2.0 < 30, S_{22} = 0.69 < -90$
	What is the maximum unilateral gain (GTU max)?
Option A:	8 dB
Option B:	10 dB
Option C:	12 dB
Option D:	14 dB
19.	Practical diode mixers have a conversion loss between in 1-10 GHz range.
Option A:	0 and 1 dB
Option B:	2 and 3 dB
Option C:	4 and 7 dB
Option D:	8 and 12 dB
20.	The size of an accumulator for a DDFS frequency range 0 to 10 kHz, frequency
	resolution of at least 0.001 Hz, and spectral purity of at least 40 dB is
Option A:	32 bit
Option B:	26 bit
Option C:	16 bit
Option D:	12 bit

Q	
A	Solve any Two 5 marks each
i.	What are Richards' Transformations? What should be the length of the stubs? Why?
ii.	List out and discuss the performance parameters of frequency synthesizers?
iii.	What are the various reflection coefficients, power levels and gains associated with two port RF amplifier circuits? Define all with a diagram.
В	Solve any One10 marks each

i.	The foll Det uns uns	S pa ows. S ermin table, table	ramet 511=0 e the Drav region	ers of 0.7612 stabi v the s.	f a BJ -151° lity u input	T at 7 , S12 sing I t and	VCE =0.02 K-Δ to outpu	=15 \ 5∠31° est an ut sta	/ and ^o , S21 id μ 1 bility	Ic = =11.8 test. I circle	15 m $4 \angle 10$ f the es an	A at 2°, S trans d sh	f=500 22=0.4 sistor i ow th	MHz a 429∠-35 is poten e stable	ore as tially and
ii.	$ \begin{array}{c} Dee \\ free \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	$\frac{s_1}{s_1}$ 2.0000 1.4142 1.0000 0.7654 0.6180 0.5176 0.4450 0.3902 0.3473	sthird g2 1.0000 1.4142 2.0000 1.8478 1.6180 1.4142 1.2470 1.1111 1.0000	solution of the second	<i>g</i> ₄ 1.0000 0.7654 1.6180 1.9318 2.0000 1.9615 1.8794	1.0000 0.6180 1.4142 1.8019 1.9615 2.0000	y flat 1 n is 10 g ₆ 1.0000 0.5176 1.2470 1.6629 1.8794	1.0000 0.4450 1.1111 1.5321	ed-elei ad imp g ₈ 1.0000 0.3902 1.0000	1.0000 0.3473	band j ce of 5 g10	pass 1 50 Ω.	filter h	aving ce	enter
	10 T:	0.3129	0.9080 Source: Ri Networks, Elemo	1.4142 eprinted fro and Couplin ent va	1.7820 m G. L. Ma ng Structure	1.9754 atthaei, L. Y es (Dedham	1.9754 Joung, and E , Mass.: Art axima	1.7820 3. M. T. Jon ech House,	1.4142 es, <i>Microw</i> 1980) with at low	0.9080 ave Filters, permission	0.3129 Impedance	1.0000 -Matching $\mathbf{g}_0 = 1$	l,ω _c =1	, N=1 to	o 10

Q									
А	Solve any Two 5 marks each								
i.	What do we un	derstand by 'charact	teristic - impedan	ce' of a cable? Ho	ow do we use this				
	property of cab	les to reduce emissi	ons and susceptib	oility?					
11.	Define shielding	g effectiveness. How	v can this be mea	sured and the resu	It expressed as?				
iii.	Explain various	s performance paran	neters of Microwa	ave Mixers.					
В	Solve any One			10	marks each				
i.	Design a micro	wave oscillator at 2.	.75 GHz using a l	BJT in its common	n base				
	configuration.	S parameters of a tra	insistor are as bel	ow	1				
	S_{11}	S ₂₁	S_{12}	S ₂₂					
	1.6733∠99.1	1.9755∠-138.68	0.6945∠94.71	1.13∠-101.3					
]				
ii.	Explain DDS fr	equency synthesize	rs and comment of	on methods of red	ucing switching				
	time.								
Q									
A	Solve any Two				5 marks each				
i.	Differentiate between frequency generator and frequency synthesizer. Give the								
	classification of	f frequency synthesi	zers.						
ii.	Compare various filter design methods?								
iii.	Discuss the importance and method of quantification of communication system EM.								
В	Solve any One 10 marks each								
i.	What is the pha	se noise in oscillato	rs? How do we c	haracterize it? Wh	at are the effects				
	of phase noise.								
ii.	A GaAs MESFET is having following S parameter								

	Freq (GHz)	S11	S21	S12	S22	
	3	0.8∠-90	2.8∠100	0	0.66∠-50	
	4	0.75∠-	2.5∠80	0	0.6∠-70	
		120				
Γ	5	0.71∠-	2.3∠60	0	0.68∠-85	
		140				
	Design an ar	nplifier to ope	erate at 4 GH	Iz for a gain o	of 11 dB. Plot	and use the constant
	gain circles t	for $Gs = 2 dB$	and GL=1 d	B to realize t	he gain.	

Q	Solve any Four out of Six (5 marks each)
А	Discuss the disadvantages of constant-k filter section and how are they overcome by an m- derived filter section?
В	Distinguish the two types of stability for a transistor amplifier.
С	A single-ended FET mixer is to be designed for a wireless local area network receiver operating at 2.4 GHz. The parameters of the FET are $R_d = 300 \Omega$, $R_i = 10 \Omega$, $C_{gs} = 0.3 pF$, and $g_1 = 10 mS$. Calculate the maximum possible conversion gain.
D	Describe in brief the different types of frequency synthesizers.
Е	Explain the functions, working of LISNs and why we need different LISNs
F	Elaborate the need for EMC specifications, standards and measurements.

Q	
A	Solve any Two (5 marks each)
i.	Describe tests for unconditional stability used in RF amplifier design.
ii.	Explain in brief Oscillator Phase Noise.
iii.	Differentiate between radiated Common-Mode (CM) and Differential-Mode (DM) coupling with suitable example.
В	Solve any One (10 marks each)
i.	Design a composite low-pass filter by the image parameter method with the following specifications: $R_0 = 50 \Omega$, $f_c = 5.25$ MHz and $f = 5.4$ MHz. Draw the filter circuit indicating the designed parameters.
ii.	Explain the following mixer characteristics: Image frequency, Conversion loss, noise figure of SSB and DSB signal.

Q	Solve any Two Questions out of Three (10 marks each)
А	Implement a low-pass filter for fabrication using microstrip lines using Richards' Transformation and Kuroda's identities. The specifications include a cutoff frequency of 4 GHz, an impedance of 50 Ohm, and a third-order3 dB equal-ripple passband response ($g_1 = 3.3487, g_2 = 0.7117, g_3 = 3.3487, g_4 = 1.0000$).

	The S-parameters at 10 GHz for a microwave transistor with a 50 ohms reference
	impedance are:
	$S_{11} = 0.5 \angle 100^{\circ},$
D	$S_{12}=0.01 \angle -20^{\circ},$
D	$S_{21}=2.0 \angle 20^{\circ}$
	$S_{22}=0.4 \angle -100^{\circ}$
	The source impedance is 25 ohms and the load impedance is 40 ohms.
	Calculate the power gain, the available power gain and the transducer power gain.
C	Explain the terms EMI and EMC. Describe the different sources of EMI in detail with
	examples.

Note: This is the sample Question bank. The questions from question bank may or may not be included in final examination.