University of Mumbai

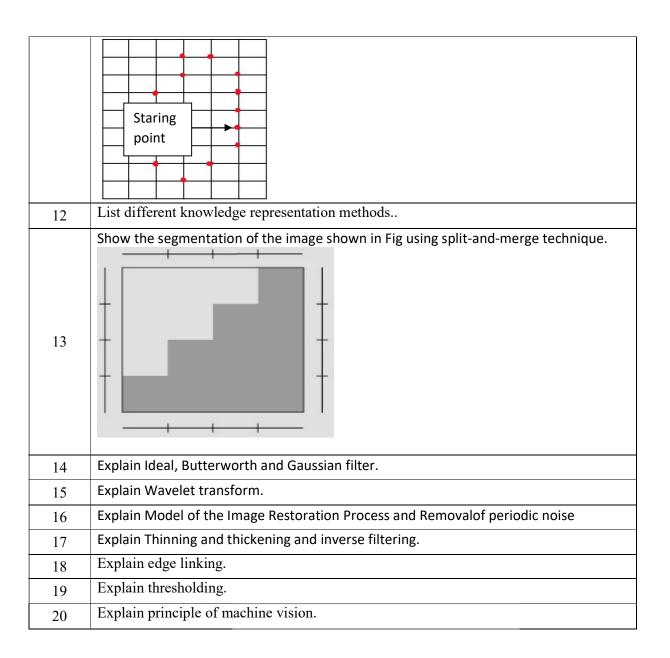
Examinations Summer 2022

Program: Electronic & Telecommunication Engineering SEM-VI (C Scheme) (R2019)

Subject: IPMV Course Code: ECC603

Time: 2hour 30 minutes Max. Marks: 80

0.1	Choose the correct option for following questions. All the Questions are							
Q1.	compulsory and carry equal marks							
1.	Which is not a color model							
Option A:	HIS							
Option B:	RGB							
Option C:	RCB							
Option D:	CMYK							
•								
2.	Haar Transformation is defined by							
Option A:	T=HFT							
Option B:	T=HFH							
Option C:	T=HFHT							
Option D:	T=HT							
3.	Image can be sharpened using							
Option A:	contouring							
Option B:	High Pass Filter							
Option C:	Erosion							
Option D:	Low pass filter							
,								
4.	Noise reduction can be obtained by blurring the image using smoothing filter							
Option A:	False							
Option B:	True Movile							
Option C:	Maybe							
Option D:	Can't say							
5.	Hit and miss transformation is used for shape							
Option A:	compression							
Option B:	decompression							
Option C:	detection							
Option D:	removal							
-								
6.	Opening and closing are each other							
Option A:	Duals							
Option B:	Centers							
Option C:	Corners							
Option D:	Neighbors							
7.	Dilation Process makes images							
Option A:	thinner							
Option B:	Thickened							
Option C:	sharpened							
Option D:	shrinked							
8.	is process of partition the digital image in to multiple regions							
<u> </u>								
Option A:	transform							


Option B:	splitting							
Option C:	filling							
Option D:	merging							
1								
9.	is the position of sign change of the first derivative among neighboring							
	points							
Option A:	point							
Option B:	line							
Option C:	edge							
Option D:	zero-crossing							
•								
10.	Canny edge detection algorithm is based on							
Option A:	Step edge							
Option B:	Real model							
Option C:	smoothing model							
Option D:	ideal model							
11.	is the starting pixel of region growing process.							
Option A:	image							
Option B:	base pixel							
Option C:	original pixel							
Option D:	seed pixel							
12.	Which of the following of a boundary is defined as the line perpendicular to the major							
	axis?							
Option A:	Minor axis							
Option B:	Equidistant axis							
Option C:	Equilateral axis							
Option D:	Median axis							
12								
13.	The effectiveness of an SVM depends upon:							
Option A:	Selection of Kernel							
Option B:	Kernel Parameters							
Option C:	Soft Margin Parameter C							
Option D:	Selection of Kernel, Kernel Parameters and Soft Margin Parameter C							
14.	Which of the following is the useful descriptor of a boundary, whose value is given by							
17.	the ratio of length of the major axis to the minor axis?							
Option A:	Eccentricity							
Option B:	Perimeter							
Option C:	Area							
Option D:	Radius							
1								
15.	The order of shape number for a closed boundary is:							
Option A:	Even							
Option B:	Odd							
Option C:	1							
Option D:	Any positive value							
16.	The term, Curvature is defined as:							
Option A:	Rate of change of area							
Option B:	Rate of change of diameter							
Option C:	Slope							
Option D:	Rate of change of slope							
17.	In 4-neighbours of a pixel p, how far are each of the neighbours located from p?							
Option A:	one pixel apart							

Ot D.	Tour winds and							
Option B:	Two pixels apart							
Option C:	Four pixels apart Alternate pixels apart							
Option D:	Alternate pixels apart							
18.	Discrete cosine transform (DCT) applied to predict error on							
Option A:	2x2 pixels							
Option B:	4x4 pixels							
Option C:	8x8 pixels							
Option C:	8x8 pixels 3x3 pixels							
Option D:	3x3 pixeis							
19.	DTET is the representation of							
Option A:	DTFT is the representation of							
Option B:	Periodic continuous signals Aperiodic continuous signals							
Option C:	Aperiodic continuous signals Aperiodic Discrete time signals							
Option C:	Periodic Discrete time signals							
Option D.	reflodic discrete time signals							
Q20.	Which of the following is a second-order derivative operator							
Option A:	Spatial							
Option B:	Gaussian							
Option C:	Histogram							
Option C:	Laplacian							
Орион D:	Lapiacian							
Q21.	Spatial domain refers to							
Option A:	Manipulations on whole image							
Option B:	Direct manipulation of image pixel							
Option C:	Modifications on Fourier transform of an image							
Option C:	Contrast shrinking							
Option D.	Contrast sin inking							
Q22.	Gray level enhancement improves							
Option A:	Contrast stretching							
Option B:	Bandwidth							
Option C:	Gamma Factor							
Option D:	Resolution							
•								
Q23.	What is the name of the filter that multiplies two functions F(u, v) and H(u, v), where F							
	has complex components too since is Fourier transformed function of $f(x, y)$, in an order							
	that each component of H multiplies both real and complex part of corresponding							
	component in F?							
Option A:	Unsharp mask filter							
Option B:	High-boost filter							
Option C:	Zero-phase-shift-filter							
Option D:	High pass filter							
Q24.	Histogram Equalisation also called as?							
Option A:	Histogram Matching							
Option B:	Image Enhancement							
Option C:	Histogram linearization							
Option D:	None of the Mentioned							
025	Durage of restaration is to sain							
Q25.	Purpose of restoration is to gain							
Option A:	Degraded image							
Option B:	Original image Divide							
Option C: Option D:	Pixels Coordinated							
Option D:	Coordinated							
26.	Degraded image is given in a							
۷0.	Degraded image is given in a							

Option A:	Frequency domain							
Option B:	Time domain							
Option C:	Spatial domain							
Option D:	Plane							
-								
27.	Degraded image is produced using degradation process and							
Option A:	Additive noise							
Option B:	Destruction Pixels							
Option C:	Pixels							
Option D:	Coordinates							
28.	Segmentation is usually not perfect due to number of factors such as							
Option A:	Noise, Bad illumination							
Option B:	Object Contain several regions							
Option C:	Due to boundary-filling							
Option D:	Due to closed contour							
29.	Laplacian is a							
Option A:	First order derivative filter							
Option B:	Sobel operator							
Option C:	Canny operator							
Option D:	Second order derivative filter							
30.	Dilation followed by erosion is called as							
Option A:	Opening							
Option B:	Closing							
Option C:	Burring							
Option D:	Translation							
31.	For point detection we use							
Option A:	Second derivative							
Option B:	First Derivative							
Option C:	Third Derivative							
Option D:	Fourth Derivative							
22	TD1 1 11' ' 41							
32.	Thresholding gives the							
Option A:	Binary Image							
Option B:	Large Image							
Option C:	Grayscale Image							
Option D:	Color Image							
33.	If the standard deviation of pixels is positive, then the sub image is labelled as							
Option A:								
Option B:	Red							
Option C:	White Green							
Option C:	Green Black							
- Երև նև D :	DIACK							
34.	Which of the following is process of partition the digital image in to multiple regions							
Option A:	Which of the following is process of partition the digital image in to multiple regions Merging							
Option B:	Filling							
Option C:	Transform							
Option D:	Splitting							
opnon D.								
35.	Which of the following of a boundary is defined as the line perpendicular to the major							
	axis?							
Option A:	Equidistant axis							
	1 1							

Option B:	Equilateral axis
Option C:	Median axis
Option D:	Minor axis
36.	Erosion also known as
Option A:	Shrinking
Option B:	Growing
Option C:	Convolution
Option D:	integration
37.	If the boundary is traversed in the clockwise direction, a vertex point 'p' is said to be a
	part of the convex segment if the rate of change of slope at 'p' is:
Option A:	Positive
Option B:	Negative
Option C:	Zero
Option D:	Non-negative
38.	Erosion also known as
Option A:	Shrinking
Option B:	Growing
Option C:	Convolution
Option D:	integration
39.	What is the order of the shape number of a rectangular boundary with the dimensions of
	3×3?
Option A:	2
Option B:	6
Option C:	12
Option D:	9
40.	In object recognition, the sensed object properties are called as
Option A:	Patterns Patterns
Option B:	Classes
Option C:	Labels
Option D:	Objects

Sr. No.	Q.1 or Q2 or Q3 5 marks each
1	Explain Unsharp Masking and High-boost Filtering,
2	Explain different color models.
3	Explain Histogram equalization and Histogram Specification
4	Explain Sobel, Prewitt and Roberts operators for sharpening image.
5	Explain 2-D DFT.
6	Explain 2-D DFT application in frequency domain filtering
7	Explain Boundary extraction, Hole filling, Thinning and thickening
8	Explain Model of the Image Degradation/Restoration Process
9	Explain removal of periodic noise and inverse filtering
10	Compare Ideal, Butterworth and gaussian filtering
11	Find chain code and shape number 8-connectivity. Use anticlockwise direction.

Sr. No.	Q.1 or Q2 or Q3						0 marks each				
1	Explain different point processing techniques.										
2	Explain averag	Explain average and median/ Order-StatisticFilters with example.									
3	Explain wavelet and Haar transform.										
4	Explain erosion, dilation and Hit and Miss transform,										
5	Determine median value of marked pixels using 3 x 3 mask For pixels 128 24 172 and 26 (in second row) [18 22 33 25 32 34; 34 128 24 172 26 23; 22 19 32 31 28 26										
6	Calculate histo	gram equalizat Gray level r	ion fo	1	2	3	4	5	6	7	
		No. of pixels with	200	170	130	50	70	80	140	160	

	gray level n _r						
7	Explain Canny edge detection.						
8	Explain Laplacian of Gaussian method for edge detection.						
9	Explain region growing and region splitting and merging.						
10	Explain Image Segmentation using the Second Derivative-The Laplacian.						
11	Explain boundary detection using polygonal method.						
12	Explain various boundary descriptors.						
13	Explain Fourier transform of boundaries.						
14	Explain Boundary description using segment sequences						
15	Explain K-means algorithm.						
16	Explain Bayesian Classifiers and its types.						
17	Explain SVM.						
18	Explain Confusion matrix and co-occurrence matrix with example.						
19	Explain classifier settings and learning						
20	Determine opening and closing for						