University of Mumbai Examination First Half 2022

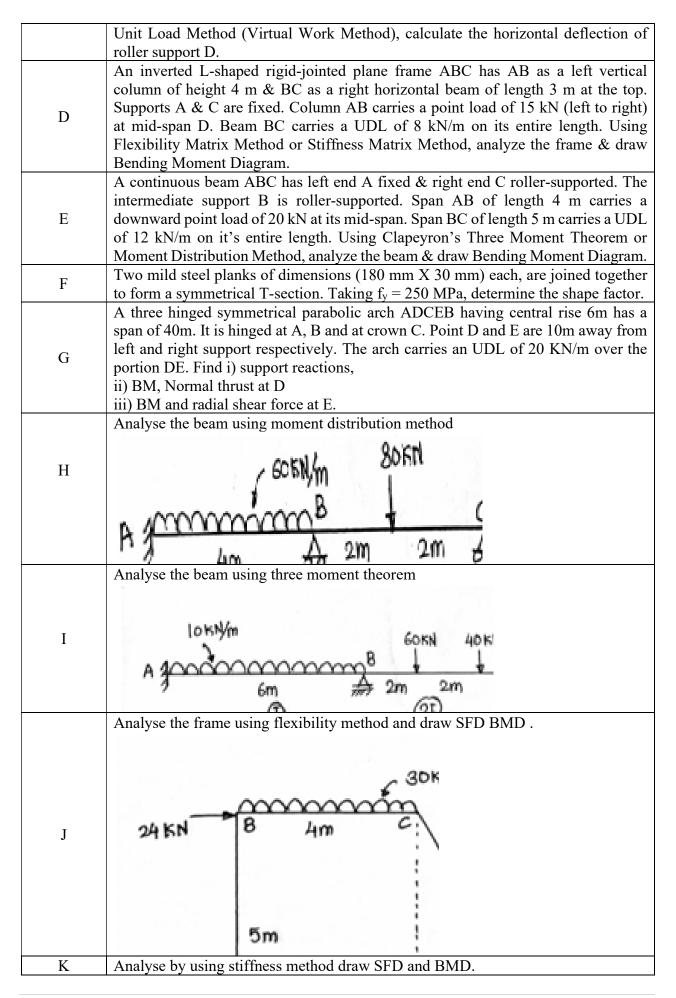
Program: BE Civil Examination: SE Semester IV Course Name: Structural Analysis Curriculum Scheme: Rev2019 Course Code: CEC402

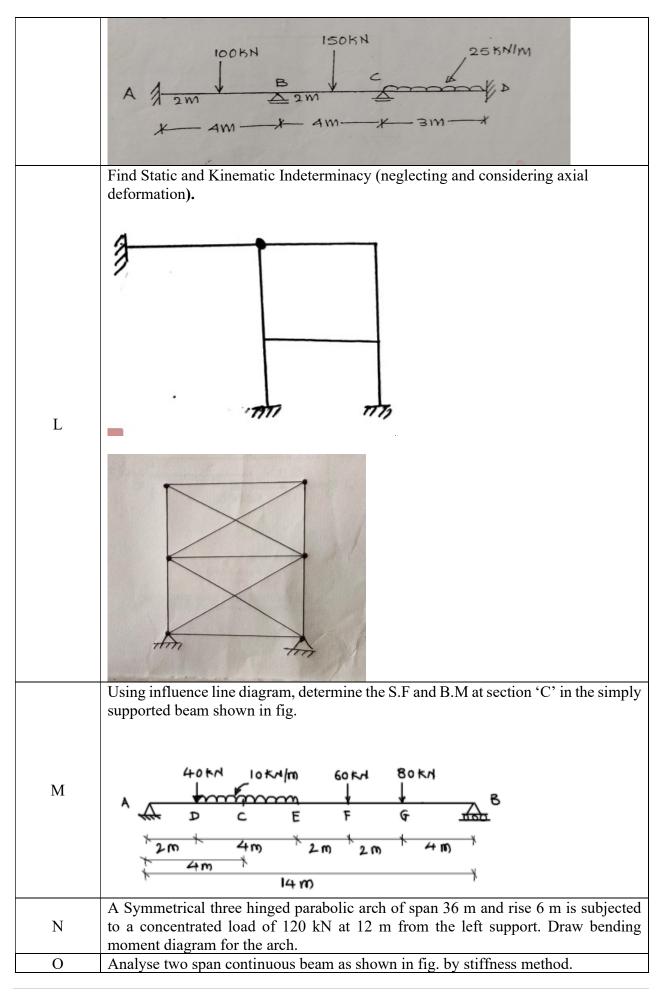
Question Bank

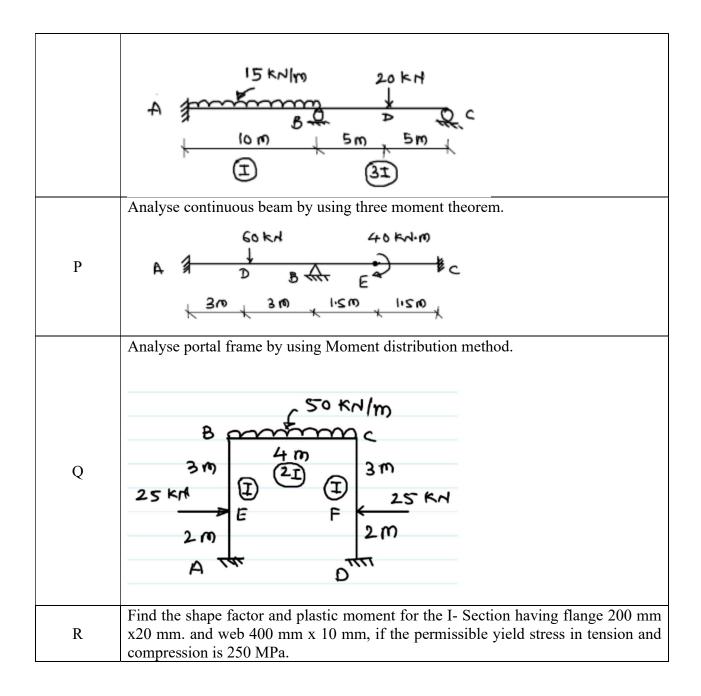
Multiple Choice Questions

Q1.	Choose the correct option for following questions.
1.	Method of joints of analysis of pin-jointed plane truss is suitable when
Option A:	Three unknown forces are at a joint
Option B:	Four unknown forces are at a joint
Option C:	One or two unknown forces are at a joint
Option D:	Only one unknown force is at a joint
2.	A right-angled triangle pin-jointed truss CAB has AC as a vertical member. Left end A is hinged & right end B is roller-supported. Member AC is perpendicular to horizontal member AB. Angle B is 30 degrees. A downward point load (W) acts at joint C. The forces in horizontal member AB & diagonal member BC are, respectively
Option A:	Zero & zero
Option B:	[W/cos60] & [Wtan60]
Option C:	[Wsin60] & [Wcos60]
Option D:	[W/sin60] & [W/tan60]
3.	A 3-hinged symmetrical parabolic arch is subjected to a UDL of (w/unit run) over the entire span. The bending moment at quarter span is
Option A:	wl ² /8
Option B:	wl ² /12
Option C:	Zero
Option D:	wl ² /24
4.	A symmetrical 3-hinged parabolic arch has a central rise of (h), span of (l) & it carries a UDL of (w/unit run) over its entire span. The value of horizontal thrust at the lower hinges is
Option A:	wl ² /16h
Option B:	wl ² /8h
Option C:	wl/16h
Option D:	$wl^2/4h$
5.	For a simply supported beam AB, Influence Line Diagram for reaction at B is
Option A:	A triangle having zero ordinate at A & unit ordinate at B
Option B:	A rectangle

Ontin C	A triangle herring man and mater of D 0 and the dimeter of A
Option C:	A triangle having zero ordinate at B & unit ordinate at A
Option D:	A triangle having zero ordinates at A & B & unit ordinate at mid-span.
	For a simply supported beam of span 10 m., Influence Line Diagram is drawn for
6.	a Bending Moment at a section 3 m from the left support. The maximum bending
	moment at the section due to a moving point load of 150 kN, is
Option A:	115 kNm
Option B:	215 kNm
Option C:	315 kNm
Option D:	415 kNm
	A simply supported beam has a span of 16 m. It is traversed by two point loads of
	10 kN & 20 kN from left to right, with 10 kN load leading. The distance between
7.	the two loads is 3 m. Using Influence Line Theory, the maximum Bending Moment
	at the centre of the beam is
Option A:	95 kNm
Option B:	105 kNm
Option C:	125 kNm
Option D:	155 kNm
1 2 -	
8.	The Unit Load Method is
Option A:	Applicable only to statically indeterminate structures
Option B:	Another name for stiffness method
Option C:	An extension of Maxwell's reciprocal theorem
Option D:	Derived from Castigliano's theorem
option D1	
	A cantilever beam has a length of (l) & it is subjected to a downward point load of
9.	(W) at the free end. The strain energy due to bending is
Option A:	W1/2EI
Option B:	WL/3EI
Option C:	W ² 1 ³ /6EI
Option D:	W ² 1 ³ /12EI
option D.	
	A simple portal frame ABCD has left support A as hinged support & right support
10.	D as roller support. AB & CD are two vertical columns & BC is a horizontal beam
101	at top. At C, there is an internal hinge. The frame is
Option A:	Unstable
Option B:	Determinate & stable
Option D:	Indeterminate & stable
Option D:	Determinate
option D.	
	A pin-jointed plane truss has left end as hinged support & right end as roller
11.	support. It is a rectangular frame with two diagonal members (i.e. totally there are
	6 members). The degree of internal static indeterminacy is
Option A:	Zero
Option B:	3
Option D:	2
Option D:	1
Option D:	
	A single hav portal frame is fixed at both the supports at the base. Neclective the
10	A single-bay portal frame is fixed at both the supports at the base. Neglecting the
12.	axial deformation, the degree of kinematic indeterminacy is


Oution A.	1
Option A:	
Option B:	2
Option C:	3
Option D:	4
13.	For a rigid-jointed plane frame, one end is fixed & the other end is having hinged
	support. The size of the flexibility matrix is
Option A:	(1 X 1)
Option B:	(2 X 2)
Option C:	(3 X 3)
Option D:	(4 X 4)
14.	Which of the following is a force method of analysis?
Option A:	Moment Distribution Method
Option B:	Stiffness Matrix Method
Option C:	Clapeyron's Three Moment Theorem
Option D:	Plastic analysis of structures
15.	The stiffness coefficient K _{ij} means
Option A:	Force at (i) due to a unit deformation at (j)
Option B:	Deformation at (i) due to a unit force at (j)
Option C:	Deformation at (j) due to a unit force at (i)
Option D:	Force at (j) due to a unit deformation at (i)
option D.	
16.	The stiffness of a spring having force (P) & deformation (Δ), is
Option A:	P/Δ
Option B:	$\frac{1}{2P}\Delta$
Option C:	$P\Delta$
Option D:	$P/2\Delta$
option D.	
17.	A beam AB is fixed at left end A and roller-supported at right end B. An
17.	anticlockwise moment (M) is applied at B. The moment developed at A is
Option A:	M (Clockwise)
Option B:	M/2 (Clockwise)
Option C:	M/2 (Anticlockwise)
Option D:	M (Anticlockwise)
option D.	
18.	In Moment Distribution Method, if distribution factor for one member at a joint is
	0.25, what is the distribution factor for the other member at the same joint?
Option A:	0.25
Option R:	0.45
Option D:	0.65
Option D:	0.75
option D.	
19.	Plastic analysis of structures is applicable for
Option A:	Ductile materials only
Option B:	Brittle materials only
Option D:	Both ductile & brittle materials
Option D:	Any structural material


20.	A beam is fixed at one end & roller-supported at the other end. For mechanism to
20.	form, the minimum number of plastic hinges to be incorporated is
Option A:	4
Option B:	3
Option D: Option C:	2
Option D:	1
Option D.	
21.	In influence line diagrams (ILD)
Option A:	Points remain fixed, position of load changes
Option A: Option B:	Points change, position of load remains fixed
Option D:	Both point and position change
Option D:	Both are always fixed
Option D.	Bour are arways fixed
22.	For stable structures, one of the important properties of flexibility and stiffness matrices is that the elements on the main diagonal i) of a stiffness matrix must be positive ii) of a stiffness matrix must be negative iii) of a flexibility matrix must be positive iv) of a flexibility matrix must be negative The correct answer is
Option A:	(ii) and (iii)
Option B:	(i) and (iii)
Option C:	(i) and (iv)
Option D:	(ii) and (iv)
- 1	
23.	A rigid-jointed plane frame is stable and statically determinate if
Option A:	(m+r) = 2j
Option B:	(m+r) = 3j
Option C:	(3m+r) = 3j
Option D:	(m+3r) = 3j
1	
24.	A single rolling load of 8 kN rolls along a girder of 15 m span. The absolute maximum bending moment will be
Option A:	8 kN.m
Option B:	25 kN.m
Option C:	30 kN.m
Option D:	35 kN.m
25.	Shape factor for the triangular cross section of beam of base 'b' and height 'h' is
Option A:	3.34
Option B:	2.34
Option C:	1.69
Option D:	3.69
26.	What is B.M. diagram Area for Simply supported beam of span 5m and carrying UDL 12KN/m?
Option A:	125
Option B:	37.5
Option C:	150
Option D:	50


27.	Minimum number of members required in a perfect(stable) truss if number of joints
	= 6
Option A:	8
Option B:	9
Option C:	10
Option D:	11
28.	Any member of a pin jointed plane truss is subjected to
Option A:	shear force only
Option B:	bending moment only
Option C:	shear force and bending moment only
Option D:	axial force only
29.	Which of the following is formula to calculate shape factor, where Mp= plastic
	moment, My= Yield moment, Zp= plastic section modulus, Z= elastic modulus,
	fy= yield stress, Pu= collapse load, Pw= working load
Option A:	Mp / My
Option B:	My / Mp
Option C:	Z / Zp
Option D:	Pu / Pw
30.	The ratio of stiffness of any member to that of total stiffness of all members meeting
	at a joint is called
Option A:	stiffness factor
Option B:	distribution factor
Option C:	rotation factor
Option D:	carry over factor

Subjective questions (10 marks each) for Q No 2,3 and 4

A	A 3-hinged symmetrical parabolic arch ACB has a span of 40 m. It has a central rise of 6 m. Two hinges are at the left support A & right support B. At crown C, there is an internal hinge. Left part AC carries a UDL of 10 kN/m. At crown C, there is a downward point load of 20 kN. Calculate radial shear, normal thrust & bending moment at 3 m from the left hinge A.
В	A simply supported girder is of length 12 m. A vehicle having 3 wheel loads of 10 kN, 7 kN & 5 kN, is moving from left to right on the girder. 10 kN load is leading & 5 kN load is trailing. The distance between 10 kN load & 7 kN load is 1.5 m & the distance between 7 kN load & 5 kN load is 1 m. Using Influence Line Diagram, Find the maximum bending moment at the mid-span of the girder.
С	A portal frame ABCD has left end A hinged & right end D roller-supported. The height of the frame is 6 m. The left vertical column AB carries a point load of 20 kN (from left to right) at mid-point E. Beam BC of length 5 m. carries a UDL of 10 kN/m on its entire length. All the members have uniform flexural rigidity. Using

