Sample Questions

Information Technology

Subject Name: Automata Theory

Course Code: ITC404

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions
	carry equal marks
1.	Which of the following is not a regular expression?
Option A:	(0+1)*. (00+11)*
Option B:	(0+1)-(01+01)*(0+1)*
Option C:	(01+11+10)*
Option D:	(1+2+0)*(1+2)*
2.	which language is represented by Regular expressions ?
Option A:	Recursive language
Option B:	Regular language
Option C:	Context free language
Option D:	Ambiguous Language
3.	The set of all strings over $\sum = \{\}$ in which a single 0 is followed by any
	number of 1's or a single 1 followed by any number of 0's is
Option A:	01*+10*
Option B:	01*10*
Option C:	0*1 + 1*0
Option D:	0*
4.	The language accepted by this DFA is
	$q_{\rm B}$ $q_{\rm I}$ b b $q_{\rm I}$ b
Option A: Option B:	ababaabaa abbbaa
Sphon D.	

Option C:	abbbaabb			
Option D:	abbaabbaa			
5.	Moore Machine is an application of:			
Option A:	Finite automata without input			
Option B:	Finite automata with output			
Option C:	Non- Finite automata with output			
Option D:	Non- Finite automata without output			
6.	In regular expressions, the operator '*' stands for			
Option A:	Concatenation			
Option B:	Addition			
Option C:	Selection			
Option D:	Iteration			
7.	The number of elements present in the ε -closure(B) in the given diagram.			
	$ \xrightarrow{1} \\ A \xrightarrow{e} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			
Option A:	0			
Option B:	1			
Option C:	2			
Option D:	3			
0				
<u>8.</u>	Grammar is called ambiguous if			
Option A:	Two or more productions have the same non-terminal on the left-hand side			
Option B:	Derivation tree has more than one associated sentence			
Option C:	There is a sentence with more than one derivation tree corresponding to it			
Option D:	Brackets are not present in the grammar			
0	$S > sS_{0}$			
).	S->hSh			
	S->0 S->a			
	S->b			
	The language generated by the above grammar over the alphabet $\{a,b\}$ is the			
	set of			
Option A:	All Palindromes			
	An raindromes			
Option B:	All Odd length Palindromes			

Option D:	String with null value				
10.	Unrestricted grammar is also called Grammar				
Option A:	Type 3				
Option B:	Type 2				
Option C:	Type 1				
Option D:	Type 0				
11.	The Trees which represent derivations in CFG are called				
Option A:	Parse tree				
Option B:	Derivation Tree				
Option C:	Both A and B				
Option D:	Binary Tree				
12.	A Multitape Turing machine is powerful than a single tape Turing				
	machine.				
Option A:	More				
Option B:	Less				
Option C:	Equal				
Option D:	Not equal				
13.	At Pushdown automata is if there is at most one transition				
	applicable to each configuration.				
Option A:	Deterministic				
Option B:	Non-Deterministic				
Option C:	Finite				
Option D:	Non-Finite				
14.	Select value of n, if Push down automata is defined using n-tuples:				
Option A:	7				
Option B:	5				
Option C:	6				
Option D:	3				
15.	In pushdown automata notation, what does the symbol Z_0 represents?				
Option A:	An element of G				
Option B:	Initial stack symbol				
Option C:	Top stack alphabet				
Option D:	Head				
16.	The language recognized by Turing machine is:				
Option A:	Context free language				
Option B:	Context sensitive language				
Option C:	Recursively enumerable language				
Option D:	Regular language				
17.	In Multi Tape Turing machine there are				

Option A:	Having more stack			
Option B:	More than one input tapes of Turing machine			
Option C:	Similar to the basic model of Turing machine			
Option D:	More than one head going in only one direction			
10				
18.	Which of the following statement is false for a Turing machine?			
Option A:	There exists an equivalent deterministic Turing machine for every non- deterministic Turing machine			
Ontion B:	Turing decidable languages are closed under intersection and			
Option B.	complementation			
Option C:	Turing recognizable languages are closed under union and intersection			
Option D:	Turing recognizable languages are closed under union and complementation			
- opnon 2 ·				
19.	Which of the following is the most general phase structured grammar?			
Option A:	Regular			
Option B:	Context-sensitive			
Option C:	Context free			
Option D:	Recursive			
20.	The concept of FSA is much used in this part of the compiler			
Option A:	Lexical analysis			
Option B:	Parser			
Option C:	Code Generation			
Option D:	Code Optimization			
21	Which symbol is used to represent a Transition Eurotion of Finite			
21.	Automata?			
Option A:	ß			
Option B:	δ			
Option C:	$\overline{\Sigma}$			
Option D:	ε			
1				
22.	What is the language of Finite Automata?			
Option A:	Recursive Language			
Option B:	Context-Sensitive Language			
Option C:	Regular Language			
Option D:	Context-Free Language			
23.	Number of states in NFA are			
Option A:	Less than or equal to equivalent DFA			
Option B:	Less than equivalent DFA			
Option C:	Greater than equivalent DFA			
Option D:	Greater than or equal to equivalent DFA			
24	What is the correct form of productions in Chomsky Normal Form?			
Ontion A	$\Delta \rightarrow aB$			
Option D.				
Option B:	$ A \rightarrow BC$			

Option C:	$A \rightarrow B$			
Option D:	A→Ba			
•				
25.	The language WW ^R is accepted by-			
Option A:	Deterministic Pushdown Automata			
Option B:	Non-Deterministic Finite Automata			
Option C:	Deterministic Finite Automata			
Option D:	Non-Deterministic Pushdown Automata			
1				
26.	The transition $\delta(q_{1,a,a}) = (q_{1,a,a})$ of PDA is -			
Option A:	Performing delete and pop operation			
Option B:	Performing delete operation only			
Option C:	Performing pop operation only			
Option D:	Performing push operation			
27.	What is the language of the Turing machine?			
Option A:	Regular language			
Option B:	Context free language			
Option C:	Recursive enumerable language			
Option D:	Context sensitive language			
28.	What is the limitation of regular grammar?			
Option A:	Can generate simple strings			
Option B:	Can only describe regular language			
Option C:	Can't generate long strings			
Option D:	Too difficult to understand			
29.	DFA designed to accept strings with no more than 2 a's can accept:			
Option A:	abab			
Option B:	abaa			
Option C:	baaa			
Option D:	ababab			
20				
30.	The length of Moore machine compared to Mealy machine is:			
Option A:	Equal to Mealy machine for given input			
Option B:	Smaller than Mealy machine for given input			
Option C:	One smaller than Mealy machine for given input			
Option D:	One longer than Mealy machine for given input			
21				
J1.	Derivation process is one which-			
Option A:	Parses given string			
Option B:	Generates new string			
Option C:	Convert string to right linear grammar			
Option D:	Convert string to left linear grammar			
22	Language of DDA is:			
32.	Language 01 PDA 18:			
Option A:	Recursively Enumerable language			
Option B:	Kegular Language			

Option C:	Context sensitive language			
Option D:	Context free language			
33.	The tuple Σ in Turing machine represents-			
Option A:	Tape symbol			
Option B:	Output symbol			
Option C:	Tape alphabet			
Option D:	Input alphabet			
34.	A Turing Machine can compute problems which are-			
Option A:	Complex			
Option B:	Simple			
Option C:	Unsolvable			
Option D:	Computable			
-				
35.	Which of the following languages are most suitable for implementing context free languages?			
Option A:	C			
Option R.	C Derl			
Option C:	Assembly Language			
Option D:	Compiler language			
Option D.				
36	With reference to the process of conversion of a context free grammar to			
50.	CNF the number of variables to be introduced for the terminals are:			
	$S \rightarrow AB0$			
Option A:				
Option B:	4			
Option C:	2			
Option D:	5			
37.	Next move function δ of a Turing machine M = (Q, Σ , I, δ , q0, B, F) is a			
	mapping			
Option A:	$\delta: Q \times \Sigma \to Q \times \Gamma$			
Option B:	$\delta: Q \ge \Gamma \to Q \ge \Sigma \ge \{L, R\}$			
Option C:	$\delta: Q \times \Sigma \to \overline{Q \times \Gamma \times \{L, R\}}$			
Option D:	$\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$			
-				
38.	1. Which of the following grammars are in Chomsky Normal Form:			
Option A:	$S \rightarrow AB BC CD, A \rightarrow AB B \rightarrow CD, C \rightarrow 2, D \rightarrow 3$			
Option B:	$S \rightarrow AB S \rightarrow BCA 0 1 2 3$			
Option C:	$S \rightarrow ABa A \rightarrow aab B \rightarrow Ac$			
Ontion D:	$S \rightarrow AB_2 A \rightarrow AAB B \rightarrow Ac$			
Option D.				
20	0 The lexical analysis for a high level lenguage needs the genue of			
39.	which one of the following machine models?			

Option A:	Turing Machine			
Option B:	Deterministic pushdown automata			
Option C:	Finite state automata			
Option D:	Non-Deterministic pushdown automata			
40.	Which of the following relates to Chomsky hierarchy?			
Option A:	Regular <cfl<csl<unrestricted< td=""></cfl<csl<unrestricted<>			
Option B:	CFL <csl<unrestricted<regular< td=""></csl<unrestricted<regular<>			
Option C:	CSL <unrestricted<cf<regular< td=""></unrestricted<cf<regular<>			
Option D:	CSL <unrestricted< regular<cf<="" td=""></unrestricted<>			
41.	$(r+s)^*$ is equivalent to:			
Option A:	s*r*			
Option B:	(r*s*)*			
Option C:	r*s*			
Option D:	rs			
42.	$X \rightarrow Y \mid \alpha$ is the production rule for			
Option A:	Regular Grammar			
Option B:	Context Free Grammar			
Option C:	Right Linear Grammar			
Option D:	Left Linear Grammar			
12				
43	Let $L=\{ab,aa,baa\},$ then which of the following does not belong to the L*?			
Option A:	3			
Option B:	abab			
Option C:	abba			
Option D:	aaabbaa			
44	Environ algorithm of a state is a combination of salf state and			
44. Ontion A:	Epsilon-closure of a state is a combination of sen state and			
Option R:	Initial state			
Option C:	Final State			
Option D:	reachable state			
Option D.				
45.	Number of states required to accept the string that ends with 10.			
Option A:	1			
Option B:	2			
Option C:	3			
Option D:	4			
- r				
46.	The finite automata is called NFA when there exists for a			
	specific input from current state to next state.			
Option A:	More than one paths			
Option B:	Single path			
Option C:	No path			
Option D:	Infinite paths			
_				

47.	Which of the following is FALSE:			
Option A:	Any given mealy machine has an equivalent moore machine.			
Option B:	Any given moore machine has an equivalent mealy machine.			
Option C:	Mealy and moore machines are FSM with output capability.			
Option D:	Moore machine does not have an equivalent mealy machine.			
48.	The transition function of deterministic finite automata is and			
	non-deterministic finite automata is			
Option A:	$\delta: Q \ge \Sigma \rightarrow Q \qquad \delta: Q \ge \Sigma \rightarrow 2^{\circ}$			
Option B:	$\delta: Q \ge \Sigma \rightarrow Q \qquad \delta: Q \ge \Sigma \rightarrow Q^2$			
Option C:	$\delta: Q \ge \sum \rightarrow \{Q, \Sigma\} \qquad \delta: Q \ge \sum \rightarrow 2^{\circ}$			
Option D:	$\delta: Q \ge \Sigma \to \{Q, \Sigma\} \qquad \delta: Q \ge \Sigma \to Q$			
49.	Generation of a language using specific rule is called			
Option A:	Optimization			
Option B:	Derivation			
Option C:	Analysis			
Option D:	Transition			
50.	In a production rule, if one non-terminal derives another non-terminal then it			
	is called as			
Option A:	ε-Production			
Option B:	Null Production			
Option C:	Useless Symbol			
Option D:	Unit Production			
51.	Which of following does not belong to 4-tuples of CFG?			
Option A:	Start Symbol			
Option B:	Terminal Symbol			
Option C:	Non-terminal symbol			
Option D:	End symbol			
52	In simulification of anomalon the variable which produces on engilon is			
52.	in simplification of grammar, the variable which produces an epsilon is			
Option A:	terminal			
Option B:	nullable			
Option C:	Empty variable			
Option D:	Useless symbol			
1				
53.	Which of the following productions are not accepted by Chomsky Grammar?			
Option A:	A→ABC			
Option B:	A→BC			
Option C:	A→a			
Option D:	$A \rightarrow \epsilon$			
1 -= /				
54	is accepted by Non-deterministic PDA but not by deterministic			
51.	PDA.			

Option A:	Even Palindromes			
Option B:	Odd Palindromes			
Option C:	Equal no of a's and b's			
Option D:	String ending with a particular terminal			
55.	The language, $\{a^nb^n \mid n \ge 1\}$ is generated by the CFG:			
Option A:	$S \rightarrow aSb \mid ab \mid \epsilon$			
Option B:	$S \rightarrow aaSbb \mid \epsilon$			
Option C:	$S \rightarrow aaSbb \mid aabb$			
Option D:	S→aSb ab			
56.	Transition function of Turing machine is given by:			
Option A:	$Q x \sum \rightarrow Q x \sum x \{L,R\}$			
Option B:	$Q^* x \sum \rightarrow Q x \sum x \{L,R\}$			
Option C:	$\boxed{Q \times \sum^* \to Q \times \sum^* x \{L,R\}}$			
Option D:	$Q x \Sigma \rightarrow Q^* x \Sigma^* x \{L,R\}$			
57.	According to Chomsky hierarchy, Recursively Enumerable language comes			
	under			
Option A:	Type 0			
Option B:	Type 1			
Option C:	Type 2			
Option D:	Type 3			
58.	Which of the following can accept even palindrome over {a,b}?			
Option A:	Deterministic Push down Automata			
Option B:	Turing machine			
Option C:	NDFA			
Option D:	DFA			
59.	If L and L' are recursively enumerable, then L is			
Option A:	regular			
Option B:	Context sensitive			
Option C:	Context free			
Option D:	recursive			
60.	In a compiler, keywords of a language are recognized during:			
Option A:	Parsing of the program			
Option B:	Code generation			
Option C:	Lexical analysis of the program.			
Option D:	Data flow analysis			

Descriptive Questions

10 marks each 1. Explain the concepts, acceptance by final state and acceptance by empty stack of a $L = \{ a^{2n}b^n \mid n \ge 1 \}$ Pushdown automata. Construct a PDA for the language, 2. Give a formal definition of Turing Machine (TM). Design a TM that performs the addition of two unary numbers. (transition table and diagram both are expected) 3. Write a short note on Chomsky hierarchy. Convert the following grammar to Chomsky Normal Form: S→ABA $A \rightarrow aA \mid \epsilon$ B→bB∣ε 4. Construct a Mealy machine and Moore machine for the following: For input from, Σ^* , where $\Sigma^{=}(0,1)$, if the input ends in '101', the output should be 'x'; if the input ends in '110', output should be 'y' otherwise output should be 'z'. (transition table and diagram both are expected) 5. Convert the given grammar G to CNF. G: S \rightarrow a | aA | B |C , A \rightarrow aB | ϵ , B \rightarrow Aa, C \rightarrow aCD | a, D \rightarrow ddd. 6. Design a Turing Machine for 2's Complement of a binary number 7. Design PDA for odd length palindrome let $\Sigma = \{0, 1\}, \Box = \{wcw^R\} \Box h \Box \Box \Box w \in$ $\Sigma *$ 8. Construct DFA for given regular expression (a+b)* aba (a+b)* 9. Design Turing Machine to accept language L={ $a^n b^n c^n | n \ge 1$ } 10. Consider the following grammar $S \rightarrow aB \mid bA$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$ with S as start symbol, find Left most derivation, Right most derivation and parse tree for the string 'bbaaabbaba'. 11. Construct Turing Machine accepting palindromes over $\Sigma = \{a, b\}$

5 marks each

1. Give formal definition of NFA. Construct a DFA equivalent to the NFA: ($\{p, q, r, s\}, \{0,1\}, \delta, p, \{q,s\}$), where ' δ ' is given by:

P		
Q Σ	0	1
→p	q,r	q
q*	r	q,r
r	S	p
s*		p

2. Consider the following CFG:

 $G = \{ (S, A), (a, b), P, S \},\$

where P consists of :

S→aAS∣a

A→SbA | SS | ba

Derive the string 'aabbaa' using leftmost derivation and rightmost derivation.

3. Give regular expression for

a. All strings containing an even number of 0's over the alphabet $\{0,1\}$

b. All strings that do not end with 'ab' over the alphabet {a,b}

4. Construct a DFA that reads a strings made up of $\{0,1\}$ and accepts only those strings which end in either '00' or '11'. (transition table and diagram both are expected)

5. Briefly explain the types of Turing Machine.

6. Construct a Context-free grammar equivalent to the following Push Down Automata (described with the help of the given set of equations):

$$\begin{split} \delta & (q_0, b, Z_0) = \{(q_0, ZZ_0)\} \\ \delta & (q_0, \epsilon, Z_0) = \{(q_0, \epsilon)\} \\ \delta & (q_0, b, Z) = \{(q_0, ZZ)\} \\ \delta & (q_0, a, Z) = \{(q_1, Z)\} \\ \delta & (q_1, b, Z) = \{(q_0, \epsilon)\} \\ \delta & (q_1, a, Z_0) = \{(q_0, Z_0)\} \end{split}$$

7. Construct DFA to accept strings that ends with substring 110 for $\Sigma = \{0,1\}$

8. Design a Moore machine which counts the occurrence of substring bab in an input string for $\Sigma = \{a, b\}$.

9. Give Regular Expressions for

i) For all strings over a,b which contains exactly 3 occurrence of b over $\Sigma = \{a, b\}$

ii) For all strings over 0,1 that starts with 10 and ends with 01

10. Let G be the grammar having the following set of production.

S→ABA,

A→aA | bA |

B→bbb

Find LMD and RMD for string "ababbbba"

11. Write Short Note on Chomsky Hierarchy

12. Compare and Contrast between FA, PDA and TM

13. Give Regular Expression for a language over the alphabet $\Sigma = \{a, b\}$ containing at most two a's

14. Convert Following CFG grammar into CNF

Sa→AbB

A→Aala

B→bBlb

15. Design PDA to check well formedness of parenthesis.

16. Design a Moore Machine for binary adder

17. State and explain closure properties of regular languages

18. Differentiate between Moore and Mealy machine