Sample Questions

Computer Engineering / Artificial Intelligence and Data Science / Artificial Intelligence and Machine Learning / Computer Science and Engineering (Artificial Intelligence and Machine Learning) / Computer Science and Engineering (Data Science) / Computer Science and Engineering (Internet of Things and Cyber Security Including Block Chain Technology) / Cyber Security / Data Engineering / Internet of Things (IoT)

Subject Name: Analysis of Algorithm

Semester: IV

	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Compare the following functions asymptotically:
	$F(n) = 2^{\log n}$
	$G(n)=n^{\sqrt{n}}$
Option A:	F(n) = G(n)
Option B:	F(n)!=G(n)
Option C:	$F(n) \leq G(n)$
Option D:	F(n) > G(n)
2.	Express the complexity of the following algorithm using recurrence relation:
	Algo (int n)
	{
	if (n>0)
	${for(i=0; i < n; i=i*2) print(i);}$
	Algo(n-1);
	}
	}
Option A:	$T(n)=T(n-1) + \log n$
Option B:	$T(n) = T(n-1) * \log n$
Option C:	$T(n) = T(n/2) + \log n$
Option D:	$T(n)=T(n/2) * \log n$
3.	Principle of Optimality is applicable to which of the following?
Option A:	Fractional Knapsack
Option B:	Fibonacci Series
Option C:	Minimum Spanning tree
Option D:	15- puzzle problem
4.	Which of the following algorithm does not use divide and conquer design
	strategy?
Option A:	Insertion sort
Option B:	Quick sort

Multiple Choice Questions

Option C:	Max Min algorithm
Option D:	Merge Sort
5.	Which of the following is correct for the Bellman Ford algorithm?
Option A:	Allows both negative weight edges and negative cycles
Option B:	Does not allow either negative weight edges or negative weight cycles.
Option C:	Allows only negative weight cycles.
Option D:	Allows negative weight edges, but no negative weight cycles.
1	
6.	Which of the following is not the subsequence of the following two strings?
	String1: COMPANION
	String2: OPINION
Option A:	OPON
Option B:	ONION
Option C:	OPNION
Option D:	OPANON
7	
/.	which of the following must be satisfied for a problem to be solvable using
	dynamic programming algorithm?
	1. Overlapping subproblems
	11. Optimal substructure property
	111. Recursive definition
Option A:	Only 1
Option B:	Only ii
Option C:	Only i and ii
Option D:	Only 1, 11 and 111
0	Considerate full-series of the series of
0.	Consider the following code snippet.
	Bounding function(k,i) {
	for(j=1 to k-1)
	{ if $((x[j]==i) \text{ or } (Abs(x[j]-i) ==abs(j-k)))$ return false;
	} return true }
	The above code represents the bounding function for which of the following algorithm?
Option A:	Subset sum problem using backtracking
Option B:	n-queens using backtracking
Option C:	Graph coloring using backtracking
Option D:	Subset sum using branch and bound
- option 2.	
0	Which of the following represent profix table for the following string in VMD
9.	algorithm?
	P: abcdabcbcabc
Option A:	abedabebeabe
Option A.	
	000012310123
	000012310123

Option B:	abcdabcbcabc
Ontion C:	000012301123
Option C.	
	000012300123
Option D:	abcdabcbcabc
	000012310223
10	Which of the following is correct for branch and bound technique?
10.	i. It is BFS generation of problem states
	ii. It is DFS generation of problem states
	iii. It is D-search.
Option A:	Only i
Option B:	Only ii
Option C:	Only ii and iii
Option D:	Only i, and iii
11	
11.	Choose the correct option for Kruskal's minimum spanning tree algorithm.
	1. Algorithm will start with forest of v vertices.
	11. FIND-SET function is used to connect disconnected component
Ontion A:	III. A safe edge selected will always connect two different trees in a forest
Option R:	Only i and ii
Option C:	
Option D:	
Option D.	
12	What is the time complexity for the following piece of code?
12.	for $(i = 0; i * i \le n; i = i + +)$
	{ statement;}
Option A:	$O(\sqrt{n})$
Option B:	$O(\log_2 n)$
Option C:	$O(\log_3 n)$
Option D:	$O(n^2)$
13.	Select the correct option matching application in column A with algorithms in
	column B
	Column A
	1. Package delivery robot has to deliver a package from point A to point B
	2. Internet download manager
	3. Airline crew scheduling between multiple legs (multiple flights).
	Column B
	a. Knapsack algorithm
	D. Dijkstra s algorithm
	d Drim's algorithm
Ontion A:	
Option A.	1 ^{-a} , 2 ⁻⁰ , 3 ⁻⁰

Option B:	1-b; 2-a; 3- c
Option C:	1-c; 2-b; 3-a
Option D:	1-c; 2-d; 3-b
14.	Worst case time complexity for Floyd Warshall is
Option A:	$O(n^2)$
Option B:	O(n ³)
Option C:	O(n!)
Option D:	O(nlogn)
15.	Using insertion sort algorithm on array a as shown below, select the correct
	option representing output after Pass 3
	a[]=[31 59 41 26 43 58]
Option A:	31 41 59 26 43 58
Option B:	26 31 41 59 43 58
Option C:	31 59 41 26 43 58
Option D:	26 31 41 43 59 58
1.6	
16.	The worst case time complexity of graph coloring algorithm is? n:number of
Outing As	nodes, m: number of colors.
Option A:	$O(n^*m)$
Option B:	$O(n^{2}m)$
Option C:	$O(n^*m^n)$
Option D:	
17	Which of the following is correct definition of NP Hard problems?
Option A:	A problem is NP hard if it is NP and it is difficult
Option R:	A problem is NP-hard if all problems in NP are polynomial time reducible to it
option D.	and the problem itself is NP
Option C:	A problem is NP hard if it is NP and hard.
Option D:	A problem is NP-hard if all problems in NP are polynomial time reducible to it.
	even though it may not be in NP itself.
18.	For the following graph, choose the correct order(s) in which edges are getting
	selected to form a minimum spanning tree using Kruskal's Algorithm.
Option A:	<1,5>, <2,3>, <2,6>, <3,4>, <5,6>
Option B:	<2,6>, <1,5>, <2,3>, <5,6>, <3,4>
Option C:	<3,4>, <5,6>, <2,3>, <1,5>, <2,6>
Option D:	<3,4>, <2,3>, <2,6>, < 5,6>, < 1,5>
19.	Which of the following is true for 0/1 Knapsack problem?
	1. Can be solved using greedy approach
	11. Can be solved using dynamic programming
	111. It can be used for resource allocation application.
Option A:	Only 11
I (Intion R)	Univ 1 and 111

Option C:	Only ii and iii
Option D:	All i, ii and iii
20.	Which of the following is true for Merge sort?
	i. It uses divide and conquer strategy
	ii. It is an in place sort
	iii. Its Complexity is O(nlogn)
Option A:	Only i
Option B:	Only i and ii
Option C:	Only i and iii
Option D:	All i, ii and iii
21.	The number of spanning trees for a graph with n vertices is
Option A:	n
Option B:	n ²
Option C:	n ⁿ⁻²
Option D:	2^{n}
22.	The number of feasible solutions in Greedy method are:
Option A:	One
Option B:	Zero
Option C:	More than one
Option D:	Hundred
23.	The optimal solution for 4-queen problem is
Option A:	(2,3,1,4)
Option B:	(1324)
1	
Option C:	(3,1,2,4)
Option C: Option D:	$(1,3,2,1) \\ (3,1,2,4) \\ (2,4,1,3)$
Option C: Option D:	(1,3,2,1) $(3,1,2,4)$ $(2,4,1,3)$
Option C: Option D: 24.	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory
Option C: Option D: 24. Option A:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming
Option C: Option D: 24. Option A: Option B:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach
Option C: Option D: 24. Option A: Option B: Option C:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer
Option C: Option D: 24. Option A: Option B: Option C: Option D:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking
Option C: Option D: 24. Option A: Option B: Option C: Option D:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25.	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n)
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A:	(1,3,2,1) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n^2)
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option B:	$(1,3,2,1)$ $(2,4,1,3)$ In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, T(n) = $3T(n/4) + cn^2$, the solution is O(n) O(n ²) O(n ²)
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option B: Option C:	(1,3,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n) O(logn) O(nlogn)
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option B: Option C: Option C: Option D:	(1,3,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n) O(n) O(logn) O(nlogn)
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option A: Option B: Option C: Option D: 26	(1,3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n) O(n) O(logn) Using Ouick sort if the array is already sorted, it will give
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option C: Option D: 26. Option A:	$(1,2,2,1)$ $(3,1,2,4)$ $(2,4,1,3)$ In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is $O(n)$ $O(n^2)$ $O(logn)$ Using Quick sort, if the array is already sorted, it will give Worst Case
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option C: Option D: 26. Option A: Option A:	(13,1,2,4) (3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n) O(n ²) O(logn) O(nlogn) Using Quick sort, if the array is already sorted, it will give Worst Case Average Case
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option C: Option D: 26. Option A: Option B: Option C:	(1,5,2,1) $(3,1,2,4)$ $(2,4,1,3)$ In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n ²) O(logn) O(nlogn) Using Quick sort, if the array is already sorted, it will give Worst Case Average Case Best Case
Option C: Option D: 24. Option A: Option B: Option C: Option D: 25. Option A: Option B: Option C: Option D: 26. Option A: Option B: Option C: Option C: Option C: Option C:	(3,1,2,4) (2,4,1,3) In which technique the previously calculated values are stored in memory Dynamic Programming Greedy Approach Divide and Conquer Backtracking For the recurrence relation, $T(n) = 3T(n/4) + cn^2$, the solution is O(n) O(n ²) O(logn) O(nlogn) Using Quick sort, if the array is already sorted, it will give Worst Case Average Case Best Case Average Case

27.	In KMP algorithm, the prefix table for the pattern $P =$ ababada is
Option A:	1002301
Option B:	1012301
Option C:	0012201
Option D:	0012301
•	
28.	What is the time complexity for the following piece of code?
	for (i =0; i <n; i++)<="" td=""></n;>
	for (j=0; j < n; j++)
	{ statement;}
Option A:	O(n)
Option B:	O(logn)
Option C:	$O(n^2)$
Option D:	O(nlogn)
29.	For the following graph, choose the correct order(s) in which edges are getting
	selected to form a minimum spanning tree using Prim's Algorithm.
	3 6
	$\begin{vmatrix} 3 \\ 6 \end{vmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$
Ontion A:	(0, 4), (3, 5), (0, 4), (1, 2), (4, 5)
Option R.	(0-4), (5-3), (0-4), (1-2), (4-3)
Option C:	$(0^{-4}), (0^{-1}), (1^{-2}), (4^{-3}), (5^{-3})$
Option D	$(0^{-4}), (4^{-5}), (5^{-5}), (4^{-5}), (1^{-2})$
Option D.	$(0^{-1}), (0^{-1}), (1^{-2}), (2^{-3}), (3^{-3})$
30	The cost of a spanning tree is equal to:
Ontion A:	The sum of costs of the vertices of the tree
Option R:	The sum of costs of the edges of the tree
Option C:	The sum of costs of the edges of the graph
Option D:	The sum of costs of the edges and vertices of the tree
option D.	
31	For the given elements 6 4 11 17 2 24 14 using quick sort what is the sequence
511	after first phase, assuming the pivot as the first element?
Option A:	2 4 6 17 11 24 14
Option B:	2 4 6 11 17 14 24
Option C:	4 2 6 17 11 24 14
Option D:	2 4 6 11 17 24 14
32.	Which of the following is not the subsequence of the following two strings?
	String1: ENGINEERING
	String2: NITRING
Option A:	NING
1	

Option B:	NRING
Option C:	NIRING
Option D:	NIARNG
33.	The worst case time complexity of Ouick sort is
Option A:	$O(n^2)$
Option B:	$O(n^3)$
Option C:	O(nlogn)
Option D:	O(n)
34	Which of the following is not an example of backtracking?
Ontion A:	N-queen problem
Option R:	15-nuzzle problem
Option C:	Sum of Subset problem
Option D:	Graph coloring problem
Option D.	
25	Which strategy is used in Job sequencing with deadlines?
Detice A	Pooltteoolring
Option A:	Daukuaukiiig
Option B:	Greedy Strategy
Option C:	Dynamic Programming
Option D:	Branch and Bound
26	
36.	Given items as $\{value, weight\}$ pairs $\{\{80,40\}, \{60,20\}, \{40,10\}\}$. The capacity
	of knapsack = 40. Find the maximum profit value assuming that the items can be
	tractioned
Option A:	80
Option B:	
Option C:	105
Option D:	160
37.	Out of the given complexities of 4 different algorithms, which algorithm
	complexity is faster?
Option A:	O(n)
Option B:	O(logn)
Option C:	$O(n^2)$
Option D:	$O(2^n)$
38.	Match problem statement in Part A with the algorithm in Part B:
	Part A:
	1. Single source - multiple destinations shortest path
	2. Single source - single destination shortest path
	3. All-pair shortest path
	Part B:
	a. Floyd-Warshall algorithm
	b. Disjkstra's algorithm
	c. Multistage graphs
Onting A:	
Option A:	1-a, 2-0, 3-c

Option B:	1-c, 2-b, 3-a
Option C:	1-b, 2-c, 3-a
Option D:	1-b, 2-a, 3-c
39.	What will be the output after pass 2 for the following elements using selection
	sort?
	61, 42, 19, 74, 25, 15, 54
Option A:	15, 19, 42, 74, 25, 61, 54
Option B:	15, 19, 25, 42, 54, 61, 74
Option C:	15, 19, 61, 42, 74, 25, 54
Option D:	61, 19, 42, 74, 25, 15, 54
	Bellman Ford algorithm is used to find out single source shortest path for
40.	negative edge weights. Bellman Ford algorithm uses which of the following
	strategy?
Option A:	Greedy method
Option B:	Dynamic Programming
Option C:	Backtracking
Option D:	Divide and Conquer
41.	We can solve any recurrence by using Master's theorem.
Option A:	True
Option B:	False
Option C:	Can't Say
Option D:	Not always
42.	Indicate constant time complexity in terms of Big-O notation.
Option A:	O(n)
Option B:	O(1)
Option C:	O(logn)
Option D:	O(n2)
43.	What is the time complexity for the following piece of code?
	for (i =0; i <n; i++)<="" td=""></n;>
	for $(j=0; j < n; j++)$
	{ statement;}
Option A:	O(n)
Option B:	O(logn)
Option C:	$O(n^2)$
Option D:	O(nlogn)
44.	Choose the correct option for Kruskal's minimum spanning tree algorithm.
	i. Algorithm will start with forest of V vertices.
	ii. FIND-SET function is used to connect disconnected component
	A safe edge selected will always connect two different trees in a forest
Option A:	Only i
Option B:	Only i and ii

Option C:	Only i and iii
Option D:	All i, ii and iii
45.	 Select the correct option matching application in column A with algorithms in column B Column A 1. Package delivery robot has to deliver a package from point A to point B 2. Resource Allocation Problem 3. Laying a telephone cable in an area with minimum cost Column B a. Knapsack algorithm b. Dijkstra's algorithm c. Travelling salesman d. Prim's algorithm
Option A:	1-a; 2-b; 3-c
Option B:	1-b; 2-a; 3-d
Option C:	1-c; 2-b; 3-a
Option D:	1-c; 2-d; 3-b
46	Worst case time complexity for Floyd Warshall is
Option A:	$O(n^2)$
Option R:	$O(n^3)$
Option C:	$O(n^{1})$
Option D:	O(nlogn)
option D.	
47.	Which of the following algorithm can be used to compute the global optimal profit value?
Option A:	0/1 knapsack
Option B:	Fractional knapsack
Option C:	Job Sequencing
Option D:	Bellman Ford
10	
48.	Which of the following is true for 0/1 Knapsack problem?
	1. Can be solved using greedy approach
	11. Can be solved using dynamic programming
Option A:	Only ii
Option B:	Only i
Option C:	Both i and ii
Option D:	Neither i nor ii
49.	Following data structure is used to implement LIFO Branch and Bound Strategy
Option A:	Priority Queue
Option B:	array
Option C:	stack
Option D:	Linked list
50.	Pre-processing time of Rabin and Karp Algorithm is

Option A:	$\theta(m^2)$
Option B:	θ (mlogn)
Option C:	θ (m)
Option D:	O(n)
51.	The solution of the recurrence $T(n) = 4T(n/2) + n$ is
Option A:	O(n^2)
Option B:	$O(n \log^2 n)$
Option C:	O(n logn)
Option D:	O(n^3)
52.	How many cases are there under Master's theorem?
Option A:	2
Option B:	3
Option C:	4
Option D:	5
	Using Quick sort, if the array is already sorted, it will give
53.	
Option A:	Worst Case
Option B:	Average Case
Option C:	Best Case
Option D:	Average Case or Worst Case
54.	Which of the following problem can be solved using greedy approach?
Option A:	N-queens problem
Option B:	All pairs shortest path problem
Option B: Option C:	All pairs shortest path problem Single source shortest path
Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem
Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem
Option B: Option C: Option D: 55.	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following?
Option B: Option C: Option D: 55. Option A: Option P:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack
Option B: Option C: Option D: 55. Option A: Option B:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Supervise trap
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy?
Option B: Option C: Option D: 55. Option A: Option A: Option C: Option D: 56. Option A:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy?
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D: 56. Option A: Option A:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Ouick sort
Option B: Option C: Option D: 55. Option A: Option B: Option C: 56. Option A: Option B: Option B: Option C:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option A: Option A: Option B: Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N queens problem
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D: 56. Option A: Option B: Option B: Option C: Option D:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option A: Option A: Option B: Option B: Option C: Option D: 57.	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem Which of the following is correct for the Bellman Ford algorithm?
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option A: Option A: Option C: Option C: Option C: Option D: 57. Option A:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem Which of the following is correct for the Bellman Ford algorithm? Allows both negative weight edges and negative cycles
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option D: 56. Option A: Option B: Option C: Option D: 57. Option A: Option A:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem Which of the following is correct for the Bellman Ford algorithm? Allows both negative weight edges and negative cycles Does not allow either negative weight edges or negative weight cycles.
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option A: Option B: Option C: Option D: 57. Option A: Option A: Option C:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem Which of the following is correct for the Bellman Ford algorithm? Allows both negative weight edges and negative cycles Does not allow either negative weight edges or negative weight cycles. Allows only negative weight cycles.
Option B: Option C: Option D: 55. Option A: Option B: Option C: Option A: Option A: Option B: Option C: Option D: 57. Option A: Option B: Option A: Option C: Option C: Option C: Option C: Option C: Option C:	All pairs shortest path problem Single source shortest path Multistage graph problem Principle of Optimality is applicable to which of the following? Fractional Knapsack Fibonacci Series Minimum Spanning tree 15- puzzle problem Which of the following algorithm uses dynamic programming design strategy? Insertion sort Quick sort All pairs shortest path N-queens problem Which of the following is correct for the Bellman Ford algorithm? Allows both negative weight edges and negative cycles Does not allow either negative weight edges or negative weight cycles. Allows negative weight edges, but no negative weight cycles.

58.	Which of the following must be satisfied for a problem to be solvable using
	dynamic programming algorithm?
	i. Overlapping subproblems
	ii. Optimal substructure property
	iii. Recursive definition
Option A:	Only i
Option B:	Only ii
Option C:	Only i and ii
Option D:	Only i, ii and iii
59.	strategy is used to solve N-Queen Problem
Option A:	Greedy Method
Option B:	Backtracking
Option C:	Divide and Conquer
Option D:	Dynamic Programming
	Which Graph Traversal method is used to construct State-space tree in
60.	backtracking?
Option A:	Depth First Search
Option B:	Breadth First Search
Option C:	Nearest Neighbor First
Option D:	Twice around the tree

Descriptive Questions

1	Given the following recurrence relation, find its complexity using recursion tree
	method.
	T(n)=c ; if n=1
	=2* T(n/2) + cn; otherwise
2	Sort the following array using quicksort algorithm.
2	[40,11,4,72,17,2,49]
3	Explain subset sum problem using backtracking approach with the help of state
5	space tree.
	Consider assembly line scheduling problem with following specifications:
	$a_{1-2} a_{2-4} w_{1-2} w_{2-2}$
4	$e_{1-2}, e_{2-4}, x_{1-3}, x_{2-2},$
	$a1 = \{7,9,3,4,8,4\}, a2 = \{8,5,6,4,5,7\}, t1 = \{2,3,1,3,4\}, t2 = \{2,1,2,2,1\}$
	What will be the minimum time from start to station 3 on assembly line 1.
5	Write a short note on Rabin Karp algorithm.
6	Explain the characteristics of dynamic programming approach with the help of
	Floyd-Warshall algorithm.

7	Consider following multistage graph. Write a backword approach algorithm for
	computing the cost from soursce node s to target node t. Also Compute the cost
	from s to t using backword approach.
	3 (4)
	- (2) 4 (7) 7
	5.5
	· S S S S S S S S S S S S S S S S S S S
	U X EX Y
	2 73 1
	(3) 5 6 (8)
	. (6)
8	Explain Dijkstra's Single source shortest path algorithm. Explain how it is
	search technique
9	Write short note on divide and conquer strategy
10	Define: P, NP, NP-complete, NP-Hard
11	Compare Bellman Ford algorithm with Dijkstra's algorithm.
12	Apply dynamic programming approach to compute the maximum profit for the
	following instance of knapsack problem.
12	$N=4, Profit=\{1,2,5,6\}, Weight=\{2,3,4,5\}$
13	What is backtracking? Explain how it is applicable to Graph coloring problem?
14	Explain the different asymptotic notations with graphs
16	Explain multistage graph problem with suitable example.
15	What is minimum spanning tree. Explain Prim's algorithm for computing
17	minimum spanning tree.
18	Sort the following elements using quick sort:
10	74, 25, 14, 66, 84, 53, 30, 48
19	Write the Kruskal's algorithm for minimum spanning tree. What is the
	complexity of Kruskal's algorithm?
20	Explain Branch and Bound with Travelling salesperson problem.
21	Explain the different asymptotic notations with graphs.
22	What is minimum spanning tree Explain Prim's algorithm for computing
	minimum spanning tree.
24	Write algorithm for binary search. Explain the algorithm with example
	Solve the following using master method:
25	i. $T(n) = 8T(n/2) + n^2$
	ii. $T(n) = 4T(n/2) + nlogn$
26	Explain the difference between greedy approach and dynamic programming
	approach.

27	Determine the LCS of the following sequences:
	$X: \{A, B, C, B, D, A, B\}$
	$Y: \{B, D, C, A, B, A\}$
28	Write a short note on Bellman Ford Algorithm.
29	Explain and apply Naïve string matching on following strings
	String1: COMPANION
	String2: PANI
30	Explain the different methods used to solve recurrence equations.
31	Explain Single source shortest path algorithm using dynamic programming
	approach. Explain how it is different from Dijkstra's greedy approach.
32	Explain assembly line scheduling problem with example.
33	Write an algorithm to find min and max number using divide and conquer
	strategy.
34	Write a short note on All pairs shortest path algorithm.
35	Rewrite and Compare Rabin Karp and Knuth Morris Pratt Algorithms