University of Mumbai

Program: **TE (CIVIL)** Curriculum Scheme: Rev2019 Examination: TE Semester V

Course Code: CEC502 and Course Name: Applied Hydraulics

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are	
1.	The fluid coming into the centrifugal nump is accelerated by	
Option A [•]	Throttle	
Option B [.]	Impeller	
Option C:	Nozzle	
Option D:	Governor	
option D.		
2.	Two Pelton wheels A and B have the same specific speed and are working under the same head. Wheel A produces 400 kW at 1000 rpm. If B produces 100 kW, then its rpm is	
Option A:	4000	
Option B:	2000	
Option C:	1500	
Option D:	1250	
3.	Calculate the mean hydraulic radius for a channel having 20m2 cross sectional area and 50m of wetted perimeter	
Option A:	0.4 m	
Option B:	0.5 m	
Option C:	0.6 m	
Option D:	0.3 m	
4.	Impulse Momentum equation is based on	
Option A:	Newton's First law of motion	
Option B:	Newton's Second law of motion	
Option C:	Newton's third law of motion	
Option D:	Law of conservation of mass	
5.	A surface profile is a measure of	
Option A:	Temperature changes	
Option B:	Pressure changes	
Option C:	Flow changes	
Option D:	Volumetric changes	
6.	In Inward radial flow reaction turbine if angle made by absolute velocity with its tangent is 90 degrees and component of whirl is zero at outlet is	
Option A:	Radial inlet discharge	
Option B:	Radial outlet discharge	

Option C:	Flow ratio	
Option D:	Speed ratio	
7.	The formation of vapour cavities is called	
Option A:	Static pressure drop	
Option B:	Cavitation	
Option C:	Isentropic expansion	
Option D:	Emulsion	
8.	Energy per unit weight of water measured with respect to the datum is called as	
Option A:	Total energy	
Option B:	Specific energy	
Option C:	Velocity head	
Option D:	Datum head	
9.	The velocity of the flow through the Kaplan turbine is 25m/s. The available head	
	of the turbine is 60m. Find the flow ratio of the turbine (take $g=10m/s2$).	
Option A:	0.65	
Option B:	0.72	
Option C:	0.69	
Option D:	0.80	
10.	The working of which of the following hydraulic units is based on Pascal's law?	
Option A:	Air lift pump	
Option B:	Hydraulic coupling	
Option C:	Hydraulic press	
Option D:	Jet pump	

Option 1

Q2.	Solve any Four out of Six5 marks each
А	Define the specific speed of a turbine. Derive an expression for the specific speed
В	Compare between impulse turbine and reaction turbine.
С	Derive the condition for maximum efficiency of the wheel (series of vanes), using that condition what is the maximum possible efficiency value?
D	The loss of energy head in a hydraulic jump is 4.25 m. The Froude number just before the jump is 7.50. Find i) discharge per meter width of the channel ii) depths before & after hydraulic jumps iii) Froude number after the jump iv) Percentage loss of energy head due to the jump.
Е	Determine the length of the back water curve caused by afflux of 2m in rectangular channel of width 40m and depth 2.5m. The slope of bed is given as $1in11000$. Take Manning's N = 0.03
F	The following data is given for a Francis turbine, Net Head H = 70 m; speed N= 600 r.p.m.; shaft power = 367.875 kW ; overall efficiency of 85% hydraulic efficiency = 95% ; flow ratio = 0.25 ; breadth ratio, n= 0.1 ; outer diameter of the runner = 2 x inner diameter of the runner. The thickness of

vanes occupy 10% of circumferential area of the runner, velocity of flow is
constant at inlet and outlet and discharge is radial at outlet.
Determine: i. The guide blade angle, Runner vane angles at inlet and outlet
ii. Diameter of runner at inlet and outlet, and Width of wheel at inlet

Q3.	Solve any Four out of Six5 marks each
А	Derive conditions for the most economical trapezoidal channel section
В	Derive expression for force exerted by jet on stationary curved plate when jet striking at Centre.
С	The discharge of water through a rectangular channel of width 6m, is 18 m3/s when depth of flow of water is 2 m calculate: a) Specific energy of flowing water , b) critical depth and critical velocity , c) value of minimum specific energy
D	What do you understand about the characteristics curves of a turbine? State and draw the important types of characteristics curves
E	Two geometrically similar pumps are run at the same speed of 1000 rpm. One pump has an impeller diameter of 0.30 m & lifts water at the rate of 20 liters per second against a head of 15 m. Determine the head & impeller diameter of other pump to deliver half the discharge.
F	The inner & outer diameters of an inward flow reaction turbine are 1.25 m & 1.60 m respectively. The vane angle at the inlet is 95°, while the guide blade angle is 22°30°. The axial depth of the wheel of inlet & outlet is 0.50 m. The turbine runs at 150 rpm. Determine i) The discharge of the turbine; ii)The outlet vane angle; iii) Shaft power.

Q4.	Solve any Four out of Six5 marks each
А	Explain term hydraulic jump. Drive an expression for the depth of hydraulic jump in term of the upstream Froude number.
В	Find the power required to drive a centrifugal pump which deliverers 0.04m3/s of water to a height of 20 m through a 15 cm diameter pipe and 100 m long. The overall efficiency of Pump is 70% and coefficient of friction $f = 0.015$
С	Find work done, power, and efficiency by using figure given below (if required assume additional data) Outlet velocity $\Phi = 60^{\circ}$ β V_{r_2} triangle V_{r_2} V_r
D	Draw Velocity profile for following cases

	i) Impulse Turbine & Reaction Turbineii) Inward & Outward radial flow reaction turbineiii) Axial flow Reaction Turbine
E	A 3 m wide rectangular channel conveys 12 cumecs of water at a depth of 2m. Calculate i) Specific energy of flowing fluid; ii) Critical depth, critical velocity and the minimum specific energy; iii) Froude's Number.
F	Write a note on multistage pump