University of Mumbai

Program: Electronics and Telecommunication Engineering Curriculum Scheme: Rev201 Examination: TE Semester V

Course Code: ECC-504 and Course Name: Discrete Time Signal Processing

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
1	compulsory and carry equal marks
1.	In bilinear transformation, the left-half s-plane is mapped to which of the
Oution A.	Destiable establishes exit airely let 1
Option A:	Partially outside the unit circle $ z =1$
Option B:	Entirely outside the unit circle $ z =1$
Option C:	Entirely inside the unit circle $ z =1$
Option D:	Partially inside the unit circle $ z =1$
2	3
۷.	Twiddle factor W_4° =
Option A:	j
Option B:	1
Option C:	-1
Option D:	-j
3.	$H_1[Z] = 1 + 0.25z^{-1}$ behaves like afilter and
	$H_2[Z] = 1 - 0.25z^{-1}$ behaves like afilter
Option A:	Low pass, High pass
Option B:	High pass, Low pass
Option C:	Band Pass, All pass
Option D:	All pass, Band pass
4.	In impulse invariant transformation method for $H(s) = \frac{1}{r_{e} R}$ digital transformation
	is given as
Option A:	$H(z) = \frac{1}{1}$
	$1-e^{pT}z^{-1}$
Option B:	$H(z) = \frac{1}{1 - \frac{-p^{T}}{r}}$
Option C:	1-e z 1
Option C.	$H(z) = \frac{1}{1 + e^{-pT} z^{-1}}$
Option D:	$H(z) = \frac{10}{z^{-1}}$
	$1+e^{p_1}z$
5	
5.	I ne Quantisation error in Analog to digital conversion (ADC) of a signal is said
	distribution function (ndf)
Ontion A:	Transaction Uniform
Opuon A:	

Option B:	Truncation, Gaussian
Option C:	Rounding, Uniform
Option D:	Rounding, Gaussian
6.	In the DTMF signal tone number 1 press generates and tones
Option A:	697 Hz and 1209 Hz
Option B:	770 Hz and 1336 Hz
Option C:	852 Hz and 1336 Hz
Option D:	941 Hz and 1209 Hz
7.	An FIR filter which has the following property $ \angle H(0) - \angle H(\pi) = \pi$ behaves
	like an
Option A:	Minimum phase system
Option B:	Maximum phase system
Option C:	Mixed phase system
Option D:	Zero phase system
8.	The simultaneous fetch of code as data is done in architecture
Option A:	Harvard architecture
Option B:	Von-Neumann architecture
Option C:	Very large instruction word architecture
Option D:	Modified Harvard architecture
9.	The relation between analog and digital frequency is nonlinear in case of
Option A:	Impulse invariant transformation.
Option B:	Bilinear transformation.
Option C:	Frequency sampling.
Option D:	chebyshev sampling
10.	Range of Round off error for two's complement binary number representation
	with B number of bits is given as
Option A:	$\left -\left(\frac{2^{-B}}{2}\right) \le \epsilon_R \le \left(\frac{2^{-B}}{2}\right)\right $
Option B:	$-\left(2^{-B}\right) \leq \epsilon_R \leq 0$
Option C:	$-\left(2^{-B}\right) \leq \epsilon_{R} \leq \left(2^{-B}\right)$
Option D:	$-(2^{+B}) \le \epsilon_R \le 0$

Q2. (20 Marks Each)	Solve any Two Questions out of Three10 marks each
А	Find DFT of the following sequence using DIT FFT algorithm. x(n)={1,1,1,1,1,1,0}
В	Differentiate between Butterworth and chebyshev filter

Q3. (20 Marks Each)	Solve any Two Questions out of Three10 marks each
А	Differentiate IIR and FIR systems.
В	Write a short note on Dual Tone Multi-Frequency Signal Detection.
С	Design a FIR filter using window method for following specification. Use hamming window of length.

Q4.	Solve any Two Questions out of Three10 marks each
(20 Marks Each)	
А	What is multirate DSP? Where it is required?
D	Write down the design steps for FIR filter using the window techniques.
D	Compare windows.
C	Explain application of DSP for Radar signal processing
e	