University of Mumbai

Program: Civil Engineering Curriculum Scheme: Rev2019 Examination: TE Semester: V

Course Code: CEC-501 Course Name: Theory of Reinforced Concrete Structures (TRCS) Time: 2 hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Limit State Method is based on	
Option A:	calculations on service load conditions alone	
Option B:	calculations on ultimate load conditions alone	
Option C:	calculations at working loads and ultimate loads	
Option D:	calculations on earthquake loads	
2.	What is the minimum tension reinforcement provided in beams when Fe415 grade of steel is used?	
Option A:	0.8%	
Option B:	0.12%	
Option C:	0.15%	
Option D:	0.2%	
3.	Modular ratio for M20 grade of concrete is	
Option A:	15.54	
Option B:	13.53	
Option C:	13.23	
Option D:	11.56	
4.	Which of the following relation is correct?	
Option A:	Design Load = Characteristic Load	
Option B:	Design Load = Characteristic Load + Partial factor of safety	
Option C:	Design Load = Characteristic Load / Partial factor of safety	
Option D:	Design Load = Characteristic Load x Partial factor of safety	
5.	Limiting Moment of resistance for an effective section 230mm x 500mm for M25 and Fe415 grades of materials is	
Option A:	234.53 kNm	
Option B:	198.38 kNm	
Option C:	191.187 kNm	
Option D:	212.75 kNm	
•		
6.	The effective span of a simply supported slab, is	
Option A:	distance between the centres of the bearings	
Option B:	clear distance between the inner faces of the walls plus the thickness of the wall	
Option C:	clear span plus effective depth of the slab	
Option D:	none of these.	

7.	Design of R.C.C. simply supported beams carrying U.D.L. is based on the resultant B.M.	
	at	
Option A:	Mid span	
Option B:	Support	
Option C:	Corner	
Option D:	Anywhere in the section	
8.	The amount of reinformcement for main bars in a slab, is based upon	
Option A:	minimum bending moment	
Option B:	maximum shear force	
Option C:	maximum bending moment	
Option D:	minimum shear force.	
9.	The self-weight of the footing, is	
Option A:	not considered for calculating the upward pressure on footing	
Option B:	also considered for calculating the upward pressure on footing	
Option C:	not considered for calculating the area of the footing	
Option D:	both (b) and (c)	
10.	In a slab, the pitch of the main reinforcement should not exceed its effective depth	
Option A:	Three times	
Option B:	Four times	
Option C:	Five times	
Option D:	Two times	

Q2	Solve any Two Questions out of Three	10 marks each
(20 Marks)		
The cross section of a singly- reinforced concrete beams 300 mm wide 450 mm deep to the center of the reinforcement which consists of 4 bars of 4 mm diameters. If the stresses in concrete and steel are not exceed 7 N/m and 230 N/mm^2, determine the moment of resistance of the section. Take 13.33. Cover to center of compression steel is 50 mm.		onsists of 4 bars of 16 not exceed 7 N/mm^2
В	A Reinforced Concrete Beam of rectangular section 230 mm deep is reinforced with 5 bars of 12 mm dia. Provide of 40 mm. calculate the ultimate Moment of resistance & distributed super imposed load this beam can carry if it is over a span of 4 m. The materials used are concrete grad Steel.	d with effective cover maximum Uniformly s simply supported
Design a slab on a hall of size 3m * 5m effective. The slab is simply sup on 230mm wall on all four sides. Consider LL = 4KN/m2 & FF = 1KN/Assume M20 grade of concrete & Fe415 steel.		

Q3	Solve any Two Questions out of Three	10 marks each
(20 Marks)		

A	A Column of 350 mm diameter has 6 bars of 16 mm diameter calculate the Ultimate load on the column. Assume clear cover of 50 mm. Use M-20 and Fe-415
В	Design an isolated footing to carry a load of 2500 KN on a column of size 450mm x 450mm. Consider SBC as 300 KN/m2. Use M20 grade of concrete and Fe415 grade of steel.
С	Design shear reinforcement for a beam of span 6m subjected to an ultimate load of 60 KN/m. Size of beam is 230mm x 800mm and reinforcement in beam is 4-20mm \varnothing bars. Assume steel of grade Fe415 and concrete of grade M20.

Q4.	Solve any Two Questions out of Three	10 marks each
(20 Marks)		
A	Design a slab on hall of size $4m \times 6m$ effective. The slab on 230mm wall on all four sides. Consider $LL = 3KN/m$. Assume M20 & Fe415 steel.	
В	RC beam has 250mm x 450mm effective is subjected to U Torsional Moment of 45 KN-m & 20 KN-m respectively. cover as 50mm & M20 & Fe415, Vu= 45 KN.	
С	Derive the expression for the position of neutral axis and resistance of balanced rectangular section	d Moment of