Program: **Computer Engineering** Curriculum Scheme: Rev2016 (Keep the required) Examination: TE Semester V Course Code: and Course Name: THEORY OF COMPUTER SCIENCE

Time: 2 hour

Max. Marks: 80

Choose the correct option for following questions. All the Questions are
compulsory and carry equal marks
In general how many substrings are there in the string "stamp"
12
16
14
18
$\sum_{k=1}^{k}$ is defined as the set of all the strings from the alphabet of length
k. What is \sum^{k} ?
power
alphabet
string
substring
a finite non empty set of symbols is called a
alphabet
string
word
grammar
consider a dfa which accepts strings of length 8. How many strings will it accept of length 7 which begins with 10 over the the $\sum = \{0,1\}$.
60
62
128
64
64
64 construct the re for the statement: strings containing atleast 1 a
construct the re for the statement: strings containing atleast 1
construct the re for the statement: strings containing atleast 1
construct the re for the statement: strings containing atleast 1 a a*b

1 | Page

6.	the language of all words with at least 2 a's can be described by the
	regular expression
Option A:	(ab)*a and a (ba)*
Option B:	(a + b)* ab* a (a + b)*
Option C:	b* ab* a (a + b)*
Option D:	all of these
7.	The regular Expression for the following language : The set of strings
	over the alphabet {0,1} starting with 0.
Option A:	(0+1)*1
Option B:	0(0+1)*
Option C:	0*1
Option D:	0*(0+1)*
8.	A given grammar is called ambiguous if
Option A:	two or more productions have the same non-terminal on the left hand side
Option B:	a derivation tree has more than one associated sentence
Option C:	there is a sentence with more than one derivation tree corresponding to it
Option D:	brackets are not present in the grammar
9.	What is the type of language accepted by a Push down Automata according to
	Chomsky's Hierarchy?
Option A:	ТуреО
Option B:	Type1
Option C:	Type2
Option D:	ТуреЗ
10.	Number of tuples used in defining a Grammar:
	3
Option A:	
Option A: Option B:	
Option B:	4 5
	4

Q2 20 Marks Total	Solve any Two Questions out of Three10 marks e	ach
А	Change the occurrence of abb into aba using a Moore Machine.	
В	Draw an NFA for the RE (a+b)*baa* and Convert it to DFA.	
С	What is Pumping Lemma for Context Free Languages? Explain	

Q3. 20 Marks Total	Solve any Two Questions out of Three	10 marks each
А	Design a PDA for Odd Palindromes.	

В	Design a Turing machine for adding unary numbers m+n.
С	Explain the Halting Problem with examples

Q4. 20 Marks Total	Solve any Two Questions out of Three	10 marks each
А	Design a PDA for Even Palindromes.	
В	Design a Turing machine for adding unary numbers m*n.	
С	Explain the Post Correspondence Problem in detail	