

Vidya Vikas Education Trust's Universal College of Engineering, Kaman Road, Vasai-401208

DEPARTMENT OF ELECTRONICS ENGINEERING

COURSE OUTCOMES

Year/Class/Semester: T.E./ ELX/ V

Subject	Subject Name	CO's
Code		
ELX 501	Microcontrollers and Applications	At the end of the course student will be able to: CO1- Explain 8051 microcontroller architecture. CO2- Develop assembly language programs for 8051 microcontroller. CO3- Design and implement 8051 based systems. CO4- Explain advanced features of Cortex-M3 architecture.
ELX 502	Digital Communication	At the end of the course student will be able to: CO1- Comprehend the advantages of digital communication over
		analog communication and explain need for various subsystems in Digital communication systems CO2- Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique. CO3- Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect CO4- Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency, Power efficiency, Probability of error in detection CO5- Explain the concept and need for designing efficient Forward Error Correcting codes. CO6- Realize the areas of application of Digital communication.
ELX503	Electromagnetic Engineering	At the end of the course student will be able to: CO1- Analyze the behavior of electromagnetic waves in different media. CO2- Evaluate various parameters of transmission lines and radiating systems. CO3- Apply computational techniques to analyze electromagnetic field distribution. CO4- Understand different mechanisms of radio wave propagation.
ELX504	Design with Linear Integrated Circuits	At the end of the course student will be able to: CO1- Demonstrate an understanding of fundamentals of integrated circuits. CO2- Analyze the various applications and circuits based on particular linear integrated circuit. CO3- Select and use an appropriate integrated circuit to build a given application. CO4- Design an application with the use of integrated circuit

Vidya Vikas Education Trust's Universal College of Engineering, Kaman Road, Vasai-401208

DEPARTMENT OF ELECTRONICS ENGINEERING

ELX	Database	At the end of the course student will be able to:
DLO501	Management	CO1- Understand the fundamentals of a database systems
1	System	CO2- Design and draw ER and EER diagram for the real life problem.
		CO3- Convert conceptual model to relational model and formulate
		relational algebra queries.
		CO4- Design and querying database using SQL.
		CO5- Analyze and apply concepts of normalization to relational
		database design.
		CO6- Understand the concept of transaction, concurrency and
		recovery.