

Vidya Vikas Education Trust's Universal College of Engineering, Kaman Road, Vasai-401208

DEPARTMENT OF ELECTRONICS ENGINEERING

COURSE OUTCOMES

Year/Class/Semester: S.E./ELX/ IV

Subject Code	Subject Name	CO's
ELX401	Applied Mathematics IV	 At the end of the course student will be able to: CO1- Demonstrate basic knowledge of Calculus of variation, Vector Spaces, Matrix Theory, Random Variables, Probability Distributions, Correlation and Complex Integration. CO2- Demonstrate an ability to identify and Model the problems in the field of Electronics and Telecommunication and solve it. CO3- Apply the application of Mathematics in Telecommunication Engineering.
ELX402		 At the end of the course student will be able to: CO1- Understand amplifiers through frequency response. CO2- Perform DC and Ac analysis of single stage and multistage amplifiers, oscillators, differential amplifiers and power amplifiers. CO3- Derive expression for performance parameters in terms of circuit and device parameters. CO4- Select appropriate circuit for given specifications/applications. CO5- Explain working and construction details of special, semiconductor devices.
ELX403	Microprocessors & Applications	 At the end of the course student will be able to: CO1- Understand and explain 16-bit microprocessor architecture. CO2- Understand and write programs for 8086 microprocessor. CO3- Use various peripheral devices to design Single Board Computer (SBC). CO4- Understand and explain 32-bit microprocessor architecture.
ELX404	Digital System Design	At the end of the course student will be able to:CO1- Design and implement synchronous sequential logic circuits.CO2- Analyze various types of digital logic circuits.

DEPARTMENT OF ELECTRONICS ENGINEERING

		CO3- Understand engineering concepts in the design of digital circuits.
		CO4- Understand the role of hardware description languages in digital circuit implementation.
		CO5- Describe simple hardware functions using a hardware description language.
		CO6- Understand the purpose of and steps involved in digital circuit implementation using Field-Programmable Gate Arrays.
		At the end of the course student will be able to:
ELX405	Principles of	CO1- Comprehend the need for various components in analog
	Communication Engineering	communication systems
		CO2- Analyze various analog modulation methods
		CO3- Design modulators, demodulators for amplitude and frequency
		modulated systems.
		CO4- Assess the characteristics of pulse modulation techniques.
		CO5- Recognize the need for multiplexing techniques.
		At the end of the course student will be able to:
ELX406	Linear Control	CO1- Understand the basic concepts of control system and identify
	System	control systems in real life applications.
		CO2 - Derive the mathematical model of different types of control
		systems and represent them in various forms
		CO3- Analyze systems using time domain analysis techniques
		cO4- Apply concepts of frequency domain techniques in stability
		analysis of control systems
		cost- Create state variable models of systems and analyze their
		CO6 Identify controllers and componenters in different