

Vidya Vikas Education Trust's Universal College of Engineering, Kaman Road, Vasai-401208

DEPARTMENT OF ELECTRONICS ENGINEERING

COURSE OUTCOMES

Year/Class/Semester: S.E./ELX/ III

Cubiast				
Subject Code	Subject Name	CO's		
Coue		At the end of the course student will be able to:		
ELX 301	Applied Mathematics III	CO1- Demonstrate basic knowledge of Laplace Transform. Fourier series, Bessel Functions, Vector Algebra and Complex Variable. CO2- Identify and model the problems in the field of Electronics and Telecommunication Engineering with feasible and practical solution. CO3- Apply the application of Mathematics in Electronics and Telecommunication Engineering.		
ELX 302	Electronic Devices &Circuits I	At the end of the course student will be able to:		
		 CO1- Explain working of semiconductor devices. CO2- Analyze characteristics of semiconductor devices. CO3- Perform DC and AC analysis of Electronics circuits. CO4- Compare various biasing circuits as well as various configurations of BJT,JFET and MOSFETs. CO5- Select best circuit for the given specifications/application. CO6- Design electronics circuits for given specifications. 		
ELX303	Digital Circuit Design	At the end of the course student will be able to: CO1- Perform various logical and arithmetic operations various number systems as well as conversion of one representation to another. CO2- Apply Boolean algebra for the implementation and minimization of logic functions. CO3- Analyze, design and implement combinational logic circuits. CO4- Differentiate between logic families TTL and CMOS. CO5- Analyze, design and implement sequential logic circuits.		
ELX30 4	Electrical Network Analysis and Synthesis	At the end of the course student will be able to: CO1- Apply their understanding of network theorems in analyzing complex circuits.		

Vidya Vikas Education Trust's Universal College of Engineering, Kaman Road, Vasai-401208

DEPARTMENT OF ELECTRONICS ENGINEERING

ELX30 5	Electronic Instruments and Measurements	CO2- Evaluate the time and frequency response of electrical circuits and thereby understand the behaviour of electrical networks. CO3- Evaluate the inter-relationship among various circuit parameters and solve complex networks using these parameters. CO4- Synthesize electrical networks for a given network function and design simple filters. At the end of the course student will be able to: CO1- Describe the static & dynamic characteristics of an instrument, components of general instrumentation system & different types of errors in the measurement process CO2- Analyze various test & measuring instruments including AC and DC bridges to determine the unknown quantity under measurement CO3- Use cathode ray oscilloscope (CRO) to perform wide range of simple to complex measurement functions for voltage, current, frequency, phase & component testing CO4- Select choice of transducer for practical & real-life applications based on their principle of operation, working, construction & characteristics.
ELXL304	Object Oriented Programming Methodology Laboratory	At the end of the course student will be able to: CO1- To apply fundamental programming constructs. CO2- To illustrate the concept of packages, classes and objects. CO3- To elaborate the concept of strings, arrays and vectors. CO4- To implement the concept of inheritance and interfaces. CO5- To implement the notion of exception handling and multithreading. CO6- To develop GUI based application.