Examinations Commencing from 1st June 2021

Program: **Information Technology** Curriculum Scheme: Rev2019 Examination: SE Semester IV

Course Code: ITC401 and Course Name: EM-IV

Γime: 2 hour	Max. Marks: 80

=

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	If $f(z) = \frac{z}{8-z^3}$, $z = x + iy$, then Residue of $f(z)$ at $z = 2$ is
Option A:	$\frac{-1}{8}$
Option B:	$\frac{1}{8}$
Option C:	$\frac{-1}{6}$
Option D:	$\frac{1}{6}$
Q2.	The value of the integral $\oint \frac{\cos(2\pi z)}{(2z-1)(z-3)} dz$ where C is the circle $ z = 1$ is
Option A:	— πi
Option B:	<u>πί</u> 5
Option C:	<u>2πi</u> 5
Option D:	πί
02	7_1
Q3.	The Analytic function $f(z) = \frac{z-1}{z^2+1}$ has Singularities at
Option A:	1 and -1
Option B:	1 and i
Option C:	1 and -i
Option D:	i and -i

	Examination 2020
Q4.	The value of $\int_{0}^{2\pi} \frac{d\theta}{5+3 \sin(\theta)}$ is
Option A:	$\frac{\pi}{2}$
Option B:	$\frac{\pi i}{2}$
Option C:	$\frac{\pi}{4}$
Option D:	<u>πί</u> 4
Q5.	Which of the following matrix is diagonalizable?
Option A:	[1 2 0 1]
Option B:	[2 4 0 3]
Option C:	[2 - 338]
Option D:	[-1-22-5]
Q6.	Suppose λ is an Eigenvalue of a non singular square matrix A . then
Option A:	$\frac{\lambda}{ A }$ is an eigenvalue of adj A
Option B:	$\frac{1}{\lambda}$ is an eigenvalue of adj A
Option C:	λ is an eigenvalue of adj A.
Option D:	$\frac{ A }{\lambda}$ is an eigenvalue of adj A
Q7.	For Matrix $A=[0\ 1\ 1\ 2\ 1\ 1\ 1\ 1]$, A^{-1} is given by
Option A:	$A^2 - 2A$
Option B:	$A^2 + 2A + 3I$
Option C:	$A^2 - 2A - I$

	Examination 2020
Option D:	A-3I
Q8.	Find Stationary points for given NLPP
	Optimise $z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$
Option A:	$x_1 = 3, x_2 = -5, x_3 = 7$
Option B:	$x_1 = 3$, $x_2 = 5$, $x_3 = 7$
Option C:	$x_1 = 2, x_2 = 5, x_3 = -7$
Option D:	$x_1 = -3$, $x_2 = 5$, $x_3 = 7$
Q9.	Find Eigenvalues of $(A^2 + 2A + 3I)$, where A=[1 1 1 0 2 1 0 0 3]
Option A:	5, 20, 19
Option B:	1,2,3
Option C:	4 , 12 ,16
Option D:	5, 11 , 18
010	2
Q10.	A Continuous random variable X has the p.d.f $f(x) = k x^2$, $0 \le x \le 2$ Find $P(0.2 \le X \le 0.5)$
Option A:	0.243
Option B:	0.0021
Option C:	0.0123
Option D:	0.5632
Q11.	A Discrete random variable X has the following probability distribution
	X 1 2 3 4 5 6 7
	$P(X=x)$ K 2k 3k k^2 $k^2 + k$ 2 k^2 4 k^2
	What is value of k?

	•
Option A:	$\frac{1}{2}$
Option B:	1 15
Option C:	$\frac{1}{8}$
Option D:	<u>2</u> 5
0.10	
Q12.	Find E(X) for the probability density function $f(x)$ =
	$\{k\left(x-x^2\right),\ 0\leq x\leq 1\ 0$, elsewhere
Option A:	$\frac{1}{3}$
Option B:	1
Option C:	$\frac{1}{2}$
Option D:	2
Q13.	A random variable X has Poisson Distribution. If $2 P(X=2) = P(X=1) + 2 P(X=0)$ Then the Variance of X is
Option A:	$\frac{3}{2}$
Option B:	2
Option C:	1
Option D:	$\frac{1}{2}$
O1 4	The man as of test statistic 7 in
Q14.	The range of test statistic-Z is:
Option A:	0 to 1
Option B:	-1 to +1
Option C:	0 to ∞
Option D:	$-\infty$ to $+\infty$

Q15.	Level of significance α lies between:
Option A:	-1 and +1
Option B:	0 and 1
Option C:	0 and n
Option D:	-∞ to +∞
Q16.	The number of independent values in a set of values is called:
Option A:	Test-statistic
Option B:	Degree of freedom
Option C:	Level of significance
Option D:	Level of confidence
Q17.	Which one of the following is correct Formula for χ^2 -distribution
Option A:	$\chi^2 = \sum \left(\frac{(O - E)^2}{O} \right)$
Option B:	$\chi^2 = \sum \left(\frac{(E-O)^2}{O} \right)$
Option C:	$\chi^2 = \sum \left(\frac{(O-E)^2}{E} \right)$
Option D:	$\chi^2 = \sum \left(\frac{(O-E)^2}{E^2} \right)$
Q18.	In analyzing the results of an experiment involving seven paired samples, tabulated t should be obtained for:
Option A:	13 degrees of freedom
Option B:	12 degrees of freedom

	T
Option C:	14 degrees of freedom
Option D:	6 degrees of freedom
Q19.	A Statement made about a population for testing purpose is called?
Option A:	Statistic
Option B:	Hypothesis
Option C:	Level of Significance
Option D:	Test-Statistic
Q20.	Find the Standard form of given LPP $maximize \ z = 3x_1 + 5x_2$ $subject \ to \ 3x_1 + 2x_2 \le 15 \ , \ 2x_1 - 5x_2 \ge -2 \ and \ x_1, x_2 \ge 0$
Option A:	
Option B:	$\begin{aligned} & \textit{maximize} \ z = 3x_1 + 5x_2 + 0x_3 + 0x_4 \\ & \textit{subject to} \ 3x_1 + 2x_2 + x_3 {\ge} 15 \ , -2x_1 + 5x_2 + x_4 {\ge} 2 \\ & \textit{and} \ x_1, x_2, x_3, x_4 {\ge} 0 \end{aligned}$
Option C:	minimize $z = 3x_1 + 5x_2 + 0x_3 + 0x_4$ subject to $3x_1 + 2x_2 + x_3 = 15$, $-2x_1 + 5x_2 + x_4 = 2$ and $x_1, x_2, x_3, x_4 \ge 0$
Option D:	$\begin{array}{l} \textit{maximize} \ z = 3x_1 + 5x_2 + 0x_3 + 0x_4 \\ \textit{subject to} \ 3x_1 + 2x_2 + x_3 = 15 \ , -2x_1 + 5x_2 + x_4 = 2 \\ \textit{and} \ x_1, x_2 \ge 0 \end{array}$

Subjective/Descriptive questions

	_	
O2.	Solve any Four	5 marks each

(20 Marks Each)	
1	The means of two random samples of sizes 9 and 7 are 196 and 199
	respectively. The sum of the squares of the deviations from the mean is 27
	and 19 respectively. Can the samples be regarded to have been drawn from
	the same normal population?
2	A)The mean breaking strength of cables supplied by a manufacturer is
	1800 with S.D. 100. By a new technique in the manufacturing process it is
	claimed that the breaking strength of the cable has increased. In order to
	test the claim a sample of 50 cables are tested. It is found that the mean
	breaking strength is 1850. Can we support the claim at 1% LOS.
3.	Use the dual simplex method to solve the following L.P.P (8)
	Minimize : $z = 6x_1 + 3x_2 + 4x_3$
	Subject to : $x_1 + 6x_2 + x_3 = 10$
	$2x_1 + 3x_2 + x_3 = 15$
	$x_1, x_2, x_3 \ge 0$
4	The proofs of a 500 page book contain 500 misprints. Find the probability
	that there are at least 4 misprints in a randomly chosen page.
5	Verify that the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 & -1 & 4 & 3 & 1 & -1 \end{bmatrix}$ satisfies the
	characteristic equation, Hence find A ⁻²
6	Obtain Laurent's series for $\frac{4z-3}{z(z-3)(z+2)}$ valid for $2 < z < 3$

Q3.	Solve any Four 5 marks eac	h
(20 Marks Each)		
i.	If the height of 500 students is normally distributed with mean 68 inches and standard deviation 4 inches. Find the expected number of students having heights between 65 and 71 inches.	
ii.	If X is binomially distributed with $E(X)=2$ and $Var(X)=4/3$. Find the probability distribution of X.	
iii.	A machine is claimed to produce nails of mean length 5cms and standard deviation of 0.45cm. A random sample of 100 nails gave 5.1 as their average length. Does the performance of the machine justify the claim? Mention the	e

	level of significance you apply.
iv.	Find Eigen value and eigen vector of $A = \begin{bmatrix} 3 - 11 - 15 - 11 - 13 \end{bmatrix}$
V.	Evaluate $\int_{0}^{1+i} z^2 dz$ along (i) line $y = x$
vi.	C) Use the dual simplex method to solve the following L.P.P (8) Minimize $z=2x_1+x_2$ Subject to $3x_1+x_2\geq 3$ $4x_1+3x_2\geq 6$ $x_1+2x_2\leq 3$ $x_1, x_2\geq 0$