University of Mumbai

Examination 2021 under cluster
Examinations Commencing from $1^{\text {st }}$ June to 15 June 2021
Program: SE(EXTC/ETRX)
Curriculum Scheme: Rev2019
Examination: SE-IV
Course Code: _ECC401 and Course Name: Engineering mathematics-IV
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The sum of Residue of $f(z)=\frac{z}{(z-1)\left(z^{2}-1\right)}$ is
Option A:	o
Option B:	1
Option C:	2
Option D:	3
2.	$\oint \frac{1-2 z}{z(z-1)(z-2)} \mathrm{dz}$ where c is $\|z\|=1.5$
Option A:	$2 \pi i$
Option B:	$3 \pi i$
Option C:	πi
Option D:	$4 \pi i$
3.	The Extremal of $\left(\int_{x_{1}}^{x_{2}} y^{2}-y^{\prime^{2}}-2 y \cosh \cosh x\right) \mathrm{dx}$ is
Option A:	$\mathrm{y}=c_{1} \cos \cos x+c_{2} \sin \sin x+\frac{1}{2} \cosh \cosh x$
Option B:	$y=c_{1} \cos \cos x-c_{2} \sin \sin x+\frac{1}{2} \cosh \cosh x$
Option C:	$\mathrm{y}=c_{1} \cos \cos x+c_{2} \sin \sin x-\frac{1}{2} \cosh \cosh x$
Option D:	$\mathrm{y}=c_{1} \cos \cos x-c_{2} \sin \sin x-\frac{1}{2} \cosh \cosh x$
4.	The Extremal of $\int_{x_{1}}^{x_{2}}\left(x+y^{\prime}\right) y^{\prime} \mathrm{dx}$ is
Option A:	$c_{1}+c_{2} \mathrm{x}-\frac{x^{2}}{4}$
Option B:	$c_{1}-c_{2} \mathrm{x}-\frac{x^{2}}{4}$
Option C:	$c_{1}-c_{2} \mathrm{x}-\frac{x^{2}}{4}$
Option D:	$c_{1}+c_{2} \mathrm{x}+\frac{x^{2}}{4}$

5.	Consider a dice with the property that that probability of a face with n dots showing up is proportional to n . The probability of face showing 4 dots is?
Option A:	1/7
Option B:	5/42
Option C:	1/21
Option D:	4/21
6.	What would be the probability of an event ' G ' if H denotes its complement, according to the axioms of probability?
Option A:	$\mathrm{P}(\mathrm{G})=1 / \mathrm{P}(\mathrm{H})$
Option B:	$\mathrm{P}(\mathrm{G})=1-\mathrm{P}(\mathrm{H})$
Option C:	$\mathrm{P}(\mathrm{G})=1+\mathrm{P}(\mathrm{H})$
Option D:	$\mathrm{P}(\mathrm{G})=\mathrm{P}(\mathrm{H})$
7.	If $\mathrm{E}(\mathrm{x})=2$ and $\mathrm{E}(\mathrm{z})=4$, then $\mathrm{E}(\mathrm{z}-\mathrm{x})=$?
Option A:	2
Option B:	6
Option C:	0
Option D:	-2
8.	For a Poisson Distribution, if mean $(\mathrm{m})=1$, then $\mathrm{P}(1)$ is?
Option A:	e
Option B:	1/e
Option C:	$\mathrm{e} / 2$
Option D:	0
9.	For a standard normal variate, the value of Standard Deviation is
Option A:	0
Option B:	1
Option C:	∞
Option D:	1.5
10.	The shortest distance between two points in a plane is
Option A:	straight line
Option B:	a curve
Option C:	parabola
Option D:	circle
11.	Find the population proportion p for an IPL team having total 30 players with 10 overseas players.
Option A:	1/2
Option B:	1/3
Option C:	2/3
Option D:	1/4
12.	If 40% of boys opted for maths and 60% of girls opted for maths, then what is the probability that maths is chosen if half of the class's population is girls?
Option A:	0.5
Option B:	0.6

19.	The subset $\left\{(1,-2),(2,9),(-4,3\}\right.$ of R^{2} is
Option A:	Linearly independent
Option B:	Basis
Option C:	Linearly dependent
Option D:	Conditional Basis
20.	The dimension of subspace $\mathrm{W}=\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}+\mathrm{y}+\mathrm{z}=0\}$ of R^{3} is
Option A:	1
Option B:	3
Option C:	2
Option D:	0

Q3.	Solve any Four out of Six
A	Using Rayleigh-Ritz method, solve $I=\int_{0}^{1}\left(x y+\frac{1}{2} \cdot y^{\prime}\right) d x$ Given that $y(0)=$ $0, y(1)=0$.
B	Defined by $\left[\begin{array}{lll}a & 0 & b \\ \text { vector space. }\end{array}\right.$$.$with usual addition and scalar multiplication is a

C	Evaluate $\int \frac{z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ where c is $\|z\|=1$

D	Find an orthonormal basis for the subspace of R^{3} by appling Gram-Schmidt process where $\boldsymbol{S}=\{(\mathbf{1 , 2 , 0}(\mathbf{0 , 3 , 1)}\}$
E	Obtain Laurent and Taylors series for $\frac{z-1}{z^{2}-2 z-3}$
F	Using Residue Theorem evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{(2+\cos \cos \theta)^{2}}$

