University of Mumbai Examination 2020

Examinations Commencing from 1st June 2021

Program: Civil Engineering Curriculum Scheme: Rev2019 Examination: Second year/ Semester IV

Course Code: CEC401 and Course Name: Engineering Mathematics-IV

Time: 2-hour

Max. Marks: 80

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	Consider a dice with the property that that probability of a face with n dots
	showing up is proportional to n. The probability of face showing 4 dots is?
Option A:	1/7
Option B:	5/42
Option C:	1/21
Option D:	4/21
Q2.	X is a variate between 0 and 3. The value of $E(X2)$ is
Option A:	8
Option B:	7
Option C:	9
Option D:	27
Q3.	A T-test sample has 7 pairs of samples. The distribution should contain
Option A:	5
Option B:	9
Option C:	6
Option D:	0
Q4.	Find the population proportion p for an IPL team having total 30 players with 10
	overseas players.
Option A:	1/2
Option B:	1/3
Option C:	2/3
Option D:	1/4
Q5.	If 40% of boys opted for math's and 60% of girls opted for maths, then what is
	the probability that math's is chosen if half of the class's population is girls?
Option A:	0.5
Option B:	0.6
Option C:	0.7
Option D:	0.4
Q6.	If $E(x) = 2$ and $E(z) = 4$, then $E(z - x) = ?$
Option A:	2
Option B:	6
Option C:	0
Option D:	-2

University of Mumbai Examination 2020

Examinations Commencing from 1st June 2021

Q7. For a Poisson Distribution, if mean(m) = 1, then $P(1)$ is?									
For a Poisson Distribution, if $mean(m) = 1$, then $P(1)$ is?									
e									
1/e									
e/2									
0									
A sample size is considered large in which of the following cases?									
n > or = 30									
n > or = 50									
n < or = 30									
n < or = 50									
Rank correlation coefficient was discovered by									
Fisher									
Spearman									
Karl Pearson									
Bowley									
A random variable X may have no moments although its M.G.F is									
Not exist									
Exist									
1									
0									
A bag contains 80 chocolates. This bag has 4 different colors of chocolates in it. If all four colors of chocolates were equally likely to be put in the bag, what									
would be the expected number of chocolates of each color?									
12									
11									
20									
19									
In a Binomial Distribution, if 'n' is the number of trials and 'p' is the probability of success, then the mean value is given by									
np(1-p)									
np									
n									
p									
A vector field which has a vanishing divergence is called as									
Solenoidal field									
Rotational field									
Hemispheroidal field									
Irrotational field									
Divergence and Curl of a vector field are									
Scalar & Scalar									

University of Mumbai Examination 2020

Examinations Commencing from 1st June 2021

Option B:	Scalar & Vector									
Option C:	Vector & Vector									
Option D:	Vector & Scalar									
Q15	If the probability of hitting the target is 0.4, find mean and variance.									
Option A:	0.4, 0.24									
Option B:	0.6, 0.24									
Option C:	0.4, 0.16 0.6, 0.16									
Option D:	0.6, 0.16									
Q16.	In testing the hypotheses <i>Ho</i> : $\mu = 50 vs Ha$: $\mu \neq 50$, the following information is knows: $n = 64$, $\bar{x} = 53.5$ and $\sigma = 10$. The standardized test statistic is:									
Option A:	t = 2.8									
Option B:	t = -2.8									
Option C:	z = 2.8									
Option D:	z = -2.8									
Q17	If the coefficient of determination is equal to 1, then the correlation coefficient									
Option A:	must also be equal to 1									
Option B:	can be either -1 or +1									
Option C:	can be any value between -1 to +1									
Option D:	must be -1									
Q18	Which of the following distributions is used to compare two variances?									
Option A:	T – Distribution									
Option B:	F – Distribution									
Option C:	Normal Distribution									
Option D:	Poisson Distribution									
Q19	Normal Distribution is symmetric is about									
Option A:	Variance									
Option B:	Mean									
Option C:	Standard deviation									
Option D:	Covariance									
Q20	In a Poisson Distribution, if 'n' is the number of trials and 'p' is the probability									
	of success, then the mean value is given by?									
Option A:	m = np									
Option B:	m = (np)2									
Option C:	m = np(1-p)									
Option D:	m = p									

University of Mumbai Examination 2020 Examinations Commencing from 1st June 2021

Solve any Four out of Six 5 marks each											
Evaluate $\int_{C} (z - z^2) dz$ where C is the lower half of the circle $ z = 1$											
Verify Green's theorem for $\overline{F} = x^2 i - xyj$ where C is the triangle having vertices A (0,3), B (3,0), C (6,3).											
A bag contains green and yellow balls. Two balls are drawn without replacement. The probability of selecting a green ball and then a yellow ball is 0.28. The probability of selecting a green ball on the first draw is 0.5. Find the probability of selecting a yellow ball on the second draw, given that the first ball drawn was green.											
Fit a	a seco	ond-degre	e parabol	ic curve	to the foll	owing data	L .				
	Х	1	2	3	4	5	6		7	8	
	у	2	6	7	8	10	1	1	11	10	
devi	iation	4 inches	. Find the	expecte	ed number	of students					
no r	elatio	on betwee								t there is	
					Smokers			Non-Smokers			
Literates					83			57			
	i	illiterates			45			68			
	Veri B (3 A ba prol sele ball Fit a If th dev: 71 i	Verify G B (3,0), G A bag co probabili selecting ball on th Fit a seco x y If the hei deviation 71 inches The follo no relatio significat	Verify Green's the B (3,0), C (6,3). A bag contains gree probability of sele selecting a green b ball on the second Fit a second-degre x 1 y 2 If the height of 500 deviation 4 inches 71 inches. (Table v The following data no relation betwee significance?	Verify Green's theorem for B (3,0), C (6,3). A bag contains green and ye probability of selecting a gr selecting a green ball on the ball on the second draw, giv Fit a second-degree parabol x 1 2 y 2 6 If the height of 500 students deviation 4 inches. Find the 71 inches. (Table value of a The following data is collec no relation between smokin significance?	Verify Green's theorem for $\overline{F} = x^2 i$ B (3,0), C (6,3). A bag contains green and yellow bag probability of selecting a green ball selecting a green ball on the first dr ball on the second draw, given that Fit a second-degree parabolic curve x 1 2 3 y 2 6 7 If the height of 500 students is norm deviation 4 inches. Find the expected 71 inches. (Table value of area under The following data is collected on t no relation between smoking and lit significance?	Verify Green's theorem for $\overline{F} = x^2 i - xyj$ wh B (3,0), C (6,3).A bag contains green and yellow balls. Two bay probability of selecting a green ball and then a selecting a green ball on the first draw is 0.5. I ball on the second draw, given that the first bayFit a second-degree parabolic curve to the follx1234y2678If the height of 500 students is normally distributedThe following data is collected on two charact no relation between smoking and literacy? Use significance?Smokers LiteratesLiterates	Verify Green's theorem for $\overline{F} = x^2i - xyj$ where C is the B (3,0), C (6,3).A bag contains green and yellow balls. Two balls are dra probability of selecting a green ball and then a yellow bals selecting a green ball on the first draw is 0.5. Find the probabil on the second draw, given that the first ball drawn wFit a second-degree parabolic curve to the following datax12345y267810If the height of 500 students is normally distributed with deviation 4 inches. Find the expected number of students 71 inches. (Table value of area under $0.75 = 0.2734$)The following data is collected on two characters. Based no relation between smoking and literacy? Use Chi squar significance?SmokersLiterates83	Verify Green's theorem for $\overline{F} = x^2 i - xyj$ where C is the trian B (3,0), C (6,3). A bag contains green and yellow balls. Two balls are drawn w probability of selecting a green ball and then a yellow ball is 0 selecting a green ball on the first draw is 0.5. Find the probabi ball on the second draw, given that the first ball drawn was gree Fit a second-degree parabolic curve to the following data: x 1 2 3 4 5 6 y 2 6 7 8 10 1 If the height of 500 students is normally distributed with mean deviation 4 inches. Find the expected number of students havi 71 inches. (Table value of area under 0.75 = 0.2734) The following data is collected on two characters. Based on th no relation between smoking and literacy? Use Chi square test significance?	Verify Green's theorem for $\overline{F} = x^2 i - xyj$ where C is the triangle havin B (3,0), C (6,3).A bag contains green and yellow balls. Two balls are drawn without rep probability of selecting a green ball and then a yellow ball is 0.28. The probability of selecting a green ball on the first draw is 0.5. Find the probability of sel ball on the second draw, given that the first ball drawn was green.Fit a second-degree parabolic curve to the following data:x123456y26781011If the height of 500 students is normally distributed with mean 68 inche deviation 4 inches. Find the expected number of students having height 71 inches. (Table value of area under 0.75 = 0.2734)The following data is collected on two characters. Based on this, can yo no relation between smoking and literacy? Use Chi square test at 5 % le significance?SmokersNon-SnLiterates	Verify Green's theorem for $\overline{F} = x^2 i - xyj$ where C is the triangle having vertice: B (3,0), C (6,3). A bag contains green and yellow balls. Two balls are drawn without replacement probability of selecting a green ball and then a yellow ball is 0.28. The probabilit selecting a green ball on the first draw is 0.5. Find the probability of selecting a year ball on the first draw is 0.5. Find the probability of selecting a year ball on the first draw is 0.5. Find the probability of selecting a year ball on the second draw, given that the first ball drawn was green. Fit a second-degree parabolic curve to the following data: x 1 2 3 4 5 6 7 y 2 6 7 8 10 11 11 The following data is collected on two characters. Based on this, can you say tha no relation between smoking and literacy? Use Chi square test at 5 % level of significance? Smokers Non-Smokers Literates	

University of Mumbai Examination 2020 Examinations Commencing from 1st June 2021

Q3 (20 Marks)	Solve any Four out of Six								5 marks each			
А	Find the residues of f(z) = $\frac{\sin \pi z}{(z-1)^2 (z-2)}$ at its poles											
В	Use Stokes's Theorem to evaluate where $\overline{F} = x^2i + xyj$ and C is the boundary of the circle $x = 0$, $y = 0$, $x = a$, $y = b$											
С	If X is a random variable with probability density function $f(x) = \{xk; 0 \le x \le 2 \ 2k; 2 \le x \le 4 \ 6k; 4 \le x \le 6$ Find k, E(X)and P (1 \le x \le 3)											
D	Compute Pearsons coefficient of correlation between advertisement cost and sales as per the data given below:Advertisement39656290827525983								ind 36			
	Cost in 1000's Sales in lakhs	47	53	58	86	62	68	60	91	51		
Е	The means of two random samples of size 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviation from the means are 26.94 and 18.73 respectively. Can the samples be considered to have been drawn from the same population?											
F	Conduct an F-Test on the following samples: Sample-1 having variance = 109.63, sample size = 41. Sample-2 having Variance = 65.99, sample size = 21											