Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Civil Engineering

Curriculum Scheme: Revised 2019

Examination: SE Semester: III

Course Code: **CE-C 302** Time: **2 hours** Course Name: Mechanics of Solids

Max. Marks: 80

Q1.	Choose the correct option for the following questions. All the Questions are
C	compulsory and carry 2 marks each.
	A circular rod of diameter 20 mm and length 2 m is subjected to an avial tensile
1	load of 50 kN. The Young's modulus of the material is 200000 MPa. The
1.	increase in the length of rod is
Option A:	4 59 mm
Option R:	3 59 mm
Option C:	2 59 mm
Option D:	1 59 mm
option D.	
	A sudden increase or decrease in shear force diagram between any two points
2.	indicates that there is
Option A:	No loading between the two points
Option B:	Point load between two points
Option C:	UDL between two points
Option D:	Couple between two points
1	
	Relation between Load (W) and Shear Force (V)
3.	
Option A:	(dV/dx) = W
Option B:	(dW/dx) = V
Option C:	No relation
Option D:	$\int V dx = W$
	Calculate the Strain energy stored in a body of stress 0.0366 N/mm ² . The cross-
4.	sectional area is 60 m ² and length of body is 1 m. Take $E = 2 \times 10^5 \text{ N/mm}^2$.
Option A:	0.2009 N.mm
Option B:	0.0416 N.mm
Option C:	0.0987 N.mm
Option D:	0.1316 N.mm
5.	A shell can be called as thin when the ratio of its wall thickness (t) to its internal
	diameter (d) is
Option A:	1/5
Option B:	1/10
Option C:	1/15
Option D:	1/20
6.	A cantilever beam of length 4 m carries a UDL of 10 kN/m throughout its length
	1 and a point load of 10 kN at the free end. The maximum bending moment is

Г

Option A:	100 kNm
Option B:	110 kNm
Option C:	120 kNm
Option D:	130 kNm
1	
7.	For a simply supported beam carrying a UDL of 10 kN/m throughout its length and a point load of 20 kN at the centre, the maximum shear force is 35 kN. The length of the beam is
Option A:	5 m.
Option B:	6 m.
Option C:	7 m.
Option D:	8 m.
8.	A portal frame ABCD of height 5 m. is hinged at left support A as well as right support D. Left column AB carries a UDL of 8 kN/m throughout its length. At C, there is an internal hinge. Beam BC of length 4 m. carries a point load of 10 kN at its centre. The horizontal reaction at support D is
Option A:	Zero
Option B:	40 kN from right to left
Option C:	40 kN from left to right
Option D:	20 kN from right to left
9.	For a solid circular section, which of the following relations is correct?
Option A:	Maximum shear stress is 2 times the average shear stress
Option B:	Maximum shear stress is 3 times the average shear stress
Option C:	Maximum shear stress is 1.25 times the average shear stress
Option D:	Maximum shear stress is 1.33 times the average shear stress
10.	Resilience can also be termed as
Option A:	Stress energy
Option B:	Strain energy
Option C:	Modulus
Option D:	Flexural Rigidity
11.	The state of stress at a point is given by $\sigma_x = -6MPa$, $\sigma_y = 4MPa$, and $\tau_{xy} = -8MPa$. The maximum tensile stress (in MPa) at the point is
Option A:	8.43 MPa
Option B:	6.27 MPa
Option C:	7.43 MPa
Option D:	4 MPa
12.	The angle between normal stress and tangential stress is known as angle of
Option A:	Declination
Option B:	Orientation
Option C:	Obliquity
Option D:	Rotation
	A 70 mm diameter solid shaft is subjected to a torque of 5 kNm. The maximum
13.	shear stress induced in the shaft is

Option A:	74.24 MPa
Option B:	84.24 MPa
Option C:	94.24 MPa
Option D:	104.24 MPa
14.	The maximum shear stress produced in a shaft is 8 MPa. The shaft is of 50 mm
	diameter. The twisting moment is
Option A:	0.1563 kNm
Option B:	0.1963 kNm
Option C:	0.2363 kNm
Option D:	0.3363 KNm
15.	The graphical method of Mohr's circle represents shear stress (τ) on
Option A:	X-axis
Option B:	Y-axis
Option C:	Z-axis
Option D:	In between X and Y axis
F	
16.	For a Circular cross-section Maximum Shear Stress=
101	Average Shear Stress
Option A:	2/3
Option B:	3/2
Option C:	4/3
Option D:	2
option D.	
17.	If an element is subjected to pure shearing stress (a) then the maximum principal
	stress is equal to
Option A:	49
Option B:	30
Option C:	20
Option D:	0
option 21	1
18	Strain energy stored in an element is equal to
Option A:	0.5 X stress
Option B:	0.5 X stress X strain
Option C:	0.5 X strain
Option D:	0.5 X stress X strain X volume
option D.	
19	The power transmitted by shaft SI system is given by
Option A:	$2\pi NT/60$
Option R:	$3\pi NT/60$
Option C:	$2\pi NT/45$
Option D:	NT/60 W
Option D.	
20	A cantilever beam of length (1) is subjected to a point load (W) at the free end
20.	A cantilever beam of length (1) is subjected to a point load (w) at the fife end.
	The beam has constant flexural rigidity. The strain energy stored in beam due to
	The beam has constant flexural rigidity. The strain energy stored in beam due to bending is
Option A.	The beam has constant flexural rigidity. The strain energy stored in beam due to bending is W1/3 FI
Option A:	The beam has constant flexural rigidity. The strain energy stored in beam due to bending is W1 / 3 EI W ² l ³ / 6 EI
Option A: Option B: Option C:	The beam has constant flexural rigidity. The strain energy stored in beam due to bending is W1 / 3 EI W ² l ³ / 6 EI W ² l ² / FI

Option D: $W^2l^3 / 16 EI$

Q. 2	Solve following Questions	10 marks each
A	Determine the maximum allowable torque which a solid circular bar 3 mm diameter can be subjected to, when specifications require that the s not exceed 56 MN/m ² and the angle of twist must not exceed 3.5° in thi Take shear modulus G = 70 GN/m ² .	m long and 100 hear stress must s length.
В	A brass tube of external diameter 60 mm is shrunk tightly on a stee diameter to form a composite shaft. The shaft has to transmit 500 kW RPM. Determine the maximum stresses developed in each material angle of twist in a length of 3 m. Take Gs 80 GPa and $Gp = 40$ GPa.	l rod of 40 mm of power at 150 and the relative

Q. 3	Solve both questions (A) and (B)Total 20 Marks
Α	Solve Any Two.5 marks each
i.	A steel cantilever rod 40 mm in diameter and 3 m in length supports a u.d.l. of 5 kN/m
	over its entire span. Determine the Strain Energy stored in the rod. Take $E = 2 \times 10^5$
	N/mm ² .
ii.	A solid circular shaft transmits 80 kW power at 210 RPM. Calculate the shaft diameter
	if the twist in the shaft is not to exceed 1 degree in 2 m. length of shaft. Take modulus
	of rigidity as 100000 MPa.
iii.	A spherical shell 40 cm internal diameter, 10 mm thick is filled with a fluid at
	atmospheric pressure. An additional 80 cm ³ of the fluid is pumped into the shell. Find
	the pressure exerted by the fluid on the walls of the shell. Also find hoop stress
	induced. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $1/\text{m} 0.3$
B	Solve <u>Any One.</u> 10 marks each
	The principal stresses at a point across two perpendicular planes are 85 MPa horizontal
i.	(Tensile) and 45 MPa vertical (Tensile). Find the normal stress, tangential stress and
	resultant stress and its obliquity on a plane at 25 degrees with the major principal plane.
	At a point in an elastic material under strain there are normal stresses 50 N/mm^2 and 30
ii.	N/mm ² respectively at right angles to each other with a shearing stress of 25 N/mm ² .
	Find the principal stresses and the position of principal planes analytically and
	graphically if a. 50 N/mm ² is tensile and 30 N/mm ² is also tensile.
	if
	a. 50 N/mm ² is tensile and 30 N/mm ² is also tensile
	b. 50 N/mm ² is tensile and 30 N/mm ² is compressive. Find also the maximum shear
	stress and its plane in both the cases.