University of Mumbai Examination 2020

Program: First Year Engineering Curriculum Scheme: REV- 2016 Examination: First Year Semester I

Course Code: FEC102 and Course Name: Applied Physics-I

Time: 2 hour

Max. Marks: 60

Q.1 30 Marks	Choose the correct option for the following questions. All the Questions are compulsory and carry equal marks.
1.	Stacking sequence in face centered cubic (FCC) close packed structure is?
Option A:	AAAAA
Option B:	ABABAB
Option C:	ABCABC
Option D:	AABBAA
2.	When the temperature of either n-type or p-type increases, determine the movement of the position of the Fermi energy level?
Option A:	Towards up of energy gap
Option B:	Towards down of energy gap
Option C:	Towards Centre of energy gap
Option D:	Towards out of page
*	
3.	Superconducting tin has a critical temperature of 3.7K at zero magnetic field and a critical field at 0.0306 Tesla at 0K. Find the critical field at 2K.
Option A:	0.0306 Tesla
Option B:	7.4 Tesla
Option C:	0.02166 Tesla
Option D:	0 Tesla
•	
4.	When does a normal conductor become a superconductor?
Option A:	At normal temperature
Option B:	At Curie temperature
Option C:	At critical temperature
Option D:	Never
•	
5.	What is the velocity when the electric field is $5V/m$ and the magnetic field is $5A/m$?
Option A:	1m/s
Option B:	25m/s
Option C:	0.2m/s
Option D:	0.125m/s
6.	FCC structure having atomic radius is 1.414 A°. Find the interplanar spacing for (2 0 0) planes.
Option A:	1.999 Ű
Option B:	2.999 A°
Option C:	3.999 A°
1	1

University of Mumbai **Examination 2020**

	Examination 2020
Option D:	1.555 A°
7.	Calculate the Hall Effect coefficient when number of electrons in a
	semiconductor is 10^{20}
Option A:	0.625
Option B:	0.0625
Option C:	6.25
Option D:	62.5
1	
8.	In Newton's ring experiment, the diameter of the 10 th ring changes from 1.40 to
	1.23 cm when a liquid is introduced between the lens and glass plate. What is the
	refractive index of the liquid?
Option A:	1.05
Option B:	1.15
Option C:	1.25
Option D:	1.35
9.	Calculate decrease in acoustic intensity level when the sound intensity is reduced to
	half of its original intensity
Option A:	1 dB
Option B:	2 dB
Option C:	3 dB
Option D:	4 dB
10.	SONAR stands for
Option A:	Sound navigation and ranging
Option B:	Sound number approximation and ranging
Option C:	Sound nullifying ranging
Option D:	Sound measurement
11.	For a particle inside a box, the potential is maximum at $x = $
Option A:	L
Option B:	2L
Option C:	L/2
Option D:	3L
12.	The defect that occurs due to a displacement of an ion is known as
Option A:	Vacancy defect
Option B:	Schottky defect
Option C:	Frankel defect
Option D:	Interstitial defect
13.	How does a semiconductor behave at absolute zero?
Option A:	Conductor
Option B:	Insulator
Option C:	Semiconductor
Option D:	Protection device
Option D.	

University of Mumbai Examination 2020

14.	The loudness (or intensity) of a sound wave is related to its
Option A:	Duration
Option B:	Frequency
Option C:	Wavelength
Option D:	Amplitude
15.	Find the energy of Neutron in units of electron-Volt whose de-Broglie wavelength is 1 A°. Given $m_n = 1.674 \times 10^{-27}$ Kg and $h=6.62 \times 10^{-34}$ J.Sec
Option A:	0.012 eV
Option B:	0.021eV
Option C:	0.081eV
Option D:	0.018eV

Q.2 15 marks	Solve any 3 out of 55 Marks each
Α	Draw and explain the NaCl unit structure. Calculate coordination number and packing factor.
В	Explain Heisenberg's uncertainty principal and prove that electron cannot exist in a nucleus.
С	Derive the formula for conductivity for semiconductor.
D	Explain Type-I and type-II superconductor.
E	Calculate reverberation time for an empty hall of size $21x \ 16x10 \ m^3$ with absorption coefficient 0.106

Q.3 15 marks	Solve any 3 out of 55 Marks each
A	Show that for intrinsic semiconductor Fermi level lies in the middle of forbidden
	gap.
В	Explain production of Ultrasonic wave using piezo electric oscillator.
С	Find the hall coefficient of sodium assuming BCC structure of Na of lattice
	constant 4.28 Aº.
D	Derive Bragg's law.
E	Obtain time dependent Schrodinger equation.