University of Mumbai Examination 2020

Program: Electronics Engineering Curriculum Scheme: Rev2016 Examination: BE Semester VII

Course Code: ELXDLO7033 and Course Name: Robotics

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	is a measure of the ability of the robot to position the tool tip in
	the same place repeatedly.
Option A:	Precision
Option B:	Stroke
Option C:	Accuracy
Option D:	Repeatability
2.	Robot classification is generally not done based on
Option A:	Drive Technologies
Option B:	Work-Envelope Geometries
Option C:	Motion Control Methods
Option D:	Use of controller
•	
3.	Which option is not a characteristic of Inverse kinematics
Option A:	easy to solve
Option B:	existence of multiple solution
Option C:	Singularities
Option D:	Possible non existence of a solution
4.	While finding the transformation matrix, transformations along x, y, z-axis is
Option A:	pre-multiplied
Option B:	post-multiplied
Option C:	Random
Option D:	doesnt matter
P	doesn't matter
5.	A point p is attached to a frame F _{noa} and is subjected to the following
	transformations. Select the correct sequence of matrix multiplication.
	1. Rotation of 90° about the n-axis,
	2. Followed by a rotation of 90° about the o-axis,
	3. Followed by a translation of [4, -3,7] along n-,o-,a axis.
Option A:	Trans(4,-3,7)Rot(n,90)Rot(o,90)
Option B:	Trans(4,-3,7)Rot(0,90)Rot(n,90)
Option C:	Rot(n,90)Rot(o,90)Trans(4,-3,7)
Option D:	Rot(o,90)Rot(a,90)Trans(4,-3,7)
6.	To place the origin of the hand frame of a cylindrical robot at $[3,4,6]^T$. Calculate
٥.	10 place the origin of the hand frame of a cylindrical robot at [5,4,0]. Calculate

	the joint variables of the robot.
Option A:	$r=5$, $l=6$, $\alpha=53.1^{\circ}$
Option B:	$r=6, l=5, \alpha=23.1^{\circ}$
Option C:	
	r=5, l=6, α=33.1°
Option D:	r=6, l=5, α=43.1°
7.	Mhish garagatan garagata and batusa tua susasius u suis in DH
/.	Which parameter represents angle between two successive x-axis in DH
Ontion A:	representation?
Option A:	Theta
Option B:	Alpha
Option C:	D
Option D:	A
8.	is a garage station of the secondary and the intervalationship
8.	is a representation of the geometry and the interrelationship
Ontion A:	between different parts of the mechanism and where they are at any given time.
Option A:	Lagrangian
Option B:	Jacobian
Option C:	Euler
Option D:	Newton
9.	
	In $[D]=[J][D_{\theta}]$, $[D_{\theta}]$ represents
Option A:	differential motions of the hand along the x-, y-, and z-axes,
Option B:	differential rotations of the hand around the x-, y-, and z-axes
Option C: Option D:	differential motions of the hand along the n-, o-, and a-axes,
Option D.	the differential motions of the joints.
10.	To calculate the differential motions (or velocities) needed at the joints of the
10.	robot for a desired hand differential motion (or velocity), we need to
	calculate
Option A:	Jacobian Jacobian
Option B:	Inverse of Jacobian
Option C:	Langrangian
Option D:	Euler
орион Б.	
11.	A lagrangian is defined as
Option A:	Kinetic energy of the system – potential energy of the system
Option B:	Potential energy of the system – kinetic energy of the system
Option C:	Kinetic energy of the system – momentum of the system
Option D:	momentum of the system – potential energy of the system
From D.	mementani di die dystem potential energy of the system
12.	Given a joint-space trajectory, the velocities and accelerations of each link are
	computed recursively, starting at the base and propagating to the tool. These
	are called the equations
Option A:	Lagrangian
Option B:	Backward Newton Euler
Option C:	Inverse Jacobian
Option D:	Forward Newton Euler
1	
	1

13.	If a point D is reached at different times on path P, then trajectories		
Option A:	Changes		
Option B:	Remain same		
Option C:	Cant say		
Option D:	Need more data		
option B.	Treed more data		
14.	The motion between the two points is computationally expensive, in case of		
Option A:	Trajectory		
Option B:	Cartesian space description		
Option C:	Joint space description		
Option D:	Path		
15.	If the unit of storage is one byte per pixel, then a single frame of a 2048 x 2048		
	pixel image uses megabyte of memory.		
Option A:	1		
Option B:	2		
Option C:	3		
Option D:	4		
16.	If the threshold is kept low for edge detection, then is detected.		
Option A:	No edge		
Option B:	Correct edge		
Option C:	Edge fragments		
Option D:	False edge		
17.	If the threehold is least high far adapt detection there is detected		
Option A:	If the threshold is kept high for edge detection, then is detected.		
Option B:	no edge Correct edge		
Option C:	Edge fragments		
Option D:	False edge		
Орион В.	Taise eage		
18.	Analog image is converted to digital by performing		
Option A:	Filtering		
Option B:	Sampling and quantization		
Option C:	Noise removal		
Option D:	Edge detection		
19.	In an image, boundary descriptors are called		
Option A:	Line descriptors		
Option B:	Area descriptors		
Option C:	Volume descriptors		
Option D:	Angle descriptors		
20.	will fill in small holes or parrow inlots in regions		
	will fill in small holes or narrow inlets in regions.		
Option A: Option B:	Descriptions		
	Segmentation Shrink eneration		
Option C:	Shrink operation		
Option D:	Swell operation		

Q2	Solve any Four out of Six	5 marks each
A	Explain in detail Robot classification.	
В	Explain path and trajectory	
С	Short note on Template Matching	
D	Explain Lagrangian Mechanics	
Е	Short note on Homogenous transformation matrix.	
F	Short note on Gross Motion Planning	

Q3	Solve any Two Questions out of Three 10 marks each
A	Explain in detail Joint space trajectory planning.
В	Find the new location and orientation of frame B after a differential rotation of 0.1 radians about the y-axis followed by a differential translation of $[0.1,0,0.2]$. $B = \begin{bmatrix} 0 & 0 & 1 & 10 \\ 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
С	Develop DH representation of a four axis SCARA robot and obtain its arm matrix.