University of Mumbai

Examination 2020

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: ECC504 and Course Name: Discrete Time Signal Processing

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the questions are compulsory and carry equal marks
1.	$x(n)^*\delta(n-k) =?$
Option A:	x(n)
Option B:	x(k)
Option C:	x(k)*δ(n-k)
Option D:	x(k)*δ(k)
2.	What is the cross correlation sequence of the following sequences? x(n)= {0,0,2, -1,3,7,1,2, -3,0,0}
Option A:	$y(n) = \{\dots, 0, 0, 1, -1, 2, -2, 4, 1, -2, 5, 0, 0, \dots\}$ $\{10, 9, 19, 36, -14, 33, 0, 7, 13, -18, 16, 7, 5, -3\}$
Option B:	{10, -9,19,36, -14,33,0,7,13, -18,16, -7,5, -3}
Option C:	{10,9,19,36,14,33,0, -7,13, -18,16, -7,5, -3}
Option D:	{10, -9,19,36, -14,33,0, -7,13,18,16,7,5, -3}
3. Option A:	The impulse response of a LTI system is h(n)= {1,1,1}. What is the response of the signal to the input x(n)= {1,2,3}? {1,3,6,3,1}
Option R:	{1,2,3,2,1}
Option D: Option C:	{1,2,3,2,1} {1,3,6,5,3}
Option D:	{1,1,1,0,0}
option D.	
4.	The output signal when a signal $x(n)=(0,1,2,3)$ is processed through an 'Identical' system is?
Option A:	(3,2,1,0)
Option B:	(1,2,3,0)
Option C:	(0,1,2,3)

Option D:	None of the mentioned
5.	If a system does not have a bounded output for bounded input, then the system is said to be
Option A:	Causal
Option B:	Non-causal
Option C:	Stable
Option D:	Non-stable
6.	The output signal when a signal $x(n)=(0,1,2,3)$ is processed through an 'Delay' system is?
Option A:	(3,2,1,0)
Option B:	(1,2,3,0)
Option C:	(0,1,2,3)
Option D:	None of the mentioned
7.	The process of converting discrete-time continuous valued signal into discrete-time discrete valued (digital) signal is known as
Option A:	Sampling
Option B:	Quantization
Option C:	Coding
Option D:	Modulating
8.	What is output signal when a signal $x(t)=cos(2*pi*40*t)$ is sampled with a sampling frequency of 20Hz?
Option A:	cos(pi*n)
Option B:	cos(2*pi*n)
Option C:	cos(4*pi*n)
Option D:	cos(8*pi*n)
9.	What is the Nyquist rate of the signal x(t)=3cos(50*pi*t)+10sin(300*pi*t)- cos(100*pi*t)?
Option A:	50Hz
Option B:	100Hz
Option C:	200Hz
Option D:	300Hz
10	
10.	If the sampling rate Fs satisfies the sampling theorem, then the relation

	between quantization errors of analog signal(eq(t)) and discrete-time signal(eq(n)) is?
Option A:	eq(t)=eq(n)
Option B:	eq(t) <eq(n)< td=""></eq(n)<>
Option C:	eq(t)>eq(n)
Option D:	not related
11.	If $x(n)=(0,0,1,2,3,4,0,0)$ then $x(n-2)$ is?
Option A:	(0,0,2,4,6,8,0,0)
Option B:	(0,0,1,2,3,4,0,0)
Option C:	(1,2,3,4,0,0,0,0)
Option D:	(0,0,0,0,1,2,3,4)
12.	What is the ROC of the signal $x(n)=\delta(n-k)$, $k>0$?
Option A:	z=0
Option B:	Z=∞
Option C:	Entire z-plane, except at z=0
Option D:	Entire z-plane, except at z=∞
13.	What is the ROC of z-transform of finite duration anti-causal sequence?
Option A:	z=0
Option B:	Z=∞
Option C:	Entire z-plane, except at z=0
Option D:	Entire z-plane, except at z=∞
14.	Which of the following justifies the linearity property of z-transform? $[x(n)\leftrightarrow X(z)]$.
Option A:	$x(n)+y(n) \leftrightarrow X(z)Y(z)$
Option B:	$x(n)+y(n) \leftrightarrow X(z)+Y(z)$
Option C:	$x(n)y(n) \leftrightarrow X(z)+Y(z)$
Option D:	$x(n)y(n) \leftrightarrow X(z)Y(z)$
15.	If $X(z)$ is the z-transform of the signal $x(n)$, then what is the z-transform of the signal $x(n)^2$
15. Option A:	If X(z) is the z-transform of the signal x(n), then what is the z-transform of the signal x(-n)? X(-z)

Option C:	X-1(z)
Option D:	None of the mentioned
16.	Which of the following is true regarding the number of computations required to compute an N-point DFT?
Option A:	N ² complex multiplications and N(N-1) complex additions
Option B:	N ² complex additions and N(N-1) complex multiplications
Option C:	N ² complex multiplications and N(N+1) complex additions
Option D:	N ² complex additions and N(N+1) complex multiplication
17.	If N=LM, then what is the value of W_N^{mqL} ?
Option A:	W _M ^{mq}
Option B:	W _L mq
Option C:	W _N ^{mq}
Option D:	None of the mentioned
18.	What is the model that has been adopt for characterizing round of errors in multiplication?
Option A:	Multiplicative white noise model
Option B:	Subtractive white noise model
Option C:	Additive white noise model
Option D:	None of the mentioned
19. Option A:	What is the total number of quantization errors in the computation of single point DFT of a sequence of length N? 2N
Option B:	4N
Option C:	8N
Option D:	12N
20.	How many number of bits are required to compute the DFT of a 1024-point sequence with a SNR of 30db?
Option A:	5
Option B:	10
Option C:	5
Option D:	20

Option 3

Q2.	20 marks
A.	Solve any Two5 marks each
i.	Explain the application of DSP in Adaptive Thresholding and automatic detection.
ii.	Explain the concept of special instructions in DSP processors
iii.	Find the linear convolution of $x_1(n)$ and $x_2(n)$ if $x_1n(n) = \{1,2,3,4\}$ and $x_2n = \{1,1,1\}$
B.	Solve any One 10 mark each
i.	Let $x(n)$ be 8 point sequence, its corresponding DFT X(K) is $X(k) = \{(0.5, (2 + j), (3 + j2), (j), (3), (-j), (3 - j2), (2 - j)\}$ Find $x(n)$ by performing IFFT.
ii.	Design a second Order DT butterworth filter with cut-off frequency of 1 KHz and sampling frequency of 10^4 samples/sec by bilinear transformation.

Q3.	20 mark
A.	Solve any Two 5 marks each
i.	Obtain a digital filter transfer function by applying IIT on the analof TF. $H_{a}(s) = \frac{S}{s^{2} + 3s + 2}$ Use F _s = 1 K samples/ sec
ii.	Explain the application of Digital Signal Processors in Dual tone Multifrequency detection using Goertzel Algorithm
iii.	Compare bilinear transform and Impulse invariance method.
B.	Solve any One 10 mark each
i.	Explain Overlap save and add method for long data filtering
ii.	Obtain DFT of a sequence x (n) = (0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0) Using Decimation in frequency FFT algorithm.