University of Mumbai

Examination 2020

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: ELX 504 Time: 2 hour

and Course Name: Design with Linear Integrated Circuits Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	An ideal op-amp requires infinite bandwidth because
Option A:	Signals can be amplified without attenuation
Option B:	Output common-mode noise voltage is zero
Option C:	Output voltage occurs simultaneously with input voltage changes
Option D:	Output can drive infinite number of devices
2.	With zero volts on both inputs, an op-amp ideally should have an output voltage
Option A:	equal to the positive supply voltage
Option B:	equal to the negative supply voltage
Option C:	equal to zero
Option D:	equal to CMRR
3.	Find the output voltage Vo of an ideal op-amp. If V_1 and V_2 are the two input
	voltages applied to the non-inverting and inverting terminals respectively and A is
	the open loop gain of the op-amp.
Option A:	$V_0 = V_1 - V_2$
Option B:	$\mathbf{V}_{\mathbf{O}} = \mathbf{A} \times (\mathbf{V}_{1} - \mathbf{V}_{2})$
Option C:	$V_0 = A \times (V_1 + V_2)$
Option D:	$V_0 = V_1 \times V_2$
4.	The common-mode voltage gain for a practical op-amp is
Option A:	Smaller than differential-mode voltage gain
Option B:	Equal to differential-mode voltage gain
Option C:	Greater than differential-mode voltage gain
Option D:	Exactly twice the differential-mode voltage gain
5.	In a differential amplifier when inputs are applied to the base of both the
	transistors and the output is taken across the collectors of both the transistors the
	configuration is called as
Option A:	Single Input Balanced Output differential amplifier
Option B:	Single Input Unbalanced Output differential amplifier
Option C:	Dual Input Balanced Output differential amplifier
Option D:	Dual Input Unbalanced Output differential amplifier
6.	An instrumentation amplifier using three op-amps is characterized by

Option A:	Variable voltage gain, low input impedance, high output impedance and high CMRR.
Option B:	Fixed voltage gain, low input impedance, low output impedance and low CMRR.
Option C:	Variable voltage gain, high input impedance, low output impedance and high CMRR.
Option D:	Fixed voltage gain, high input impedance, high output impedance and high CMRR.
7.	The roll off rate of a second order low pass filter is
Option A:	10 dB/decade
Option B:	20 dB/decade
Option C:	30 dB/decade
Option D:	40 dB/decade
8.	An ideal second order active band pass filter has two cut off frequencies $f_{\rm L}$ and $f_{\rm H}$
	where $f_{\rm L} < f_{\rm H}$
Option A:	It passes frequencies above $f_{\rm L}$ and rejects frequencies below $f_{\rm H}$
Option B:	It passes frequencies above $f_{\rm H}$ and rejects frequencies below $f_{\rm L}$
Option C:	It passes frequencies above $f_{\rm H}$ and below $f_{\rm L}$
Option D:	It rejects frequencies above $f_{\rm H}$ and below $f_{\rm L}$
0	In the Wein bridge agaillator, the frequency of agaillation and gain of the
9.	amplifier block are
Option A:	$f_{0} = 1 / (2\pi RC) \text{ and } A_{11} = 20$
Option R:	$\int_{0}^{1} - \frac{1}{2\pi RC} dR A = 29$
Option D:	$J_0 = 1 / (20 \text{ RC } \sqrt{0}) \text{ and } R_V = 29$
Option C.	$f_0 = 1 / (2\pi RC \sqrt{6}) and A_V = 3$
Option D:	$f_0 = 1 / (2\pi RC)$ and $ A_V = 3$
10	Have is the square wave output concreted in an amp?
Option A:	On amp is forced to operate only in the positive saturation ragion
Option R:	On-amp is forced to operate only in the pegative saturation region
Option C:	O_{P-amp} is forced to operate alternately in the positive saturation and negative
Option C.	saturation regions
Option D [.]	On-amp is forced to operate only in the linear region
option D.	
11.	A symmetrical triangular waveform has
Option A:	Rise time < fall time
Option B:	Rise time = fall time
Option C:	Rise time = zero
Option D:	Rise time > fall time
12.	A rectangular waveform having ON time greater than its OFF time is fed as input
	to an integrator. The resulting output of the integrator is called
Option A:	Triangular waveform
Option B:	Sawtooth waveform
Option C:	Square waveform
Option D:	Sine waveform
12	
13.	Which of these circuits converts a sinusoidal waveform to a square waveform?
Option A:	Schmitt trigger

Voltage limiter
Regulator
Peak detector
A monolithic timer IC which can be used as Astable and Monostable
multivibrator is
IC 565
IC 566
IC 555
IC 723
The reference voltage of lower and upper comparator used in functional block
diagram of IC 555 is
$1/3 V_{CC}$ and $2/3 V_{CC}$
$1/3 V_{CC}$ and $1/4 V_{CC}$
$2/3 V_{CC}$ and $1/4 V_{CC}$
$1/5 V_{CC}$ and $2/5 V_{CC}$
The output frequency of IC 555 configured to run in astable mode with $R1=R2=4$
kilo Ohms and C =0.01 micro Farads is
12 kHZ
10 kHZ
20 kHZ
5 kHZ
For a Phase Locked Loop which of the following is true?
Lock in range > Capture range
Lock in range < Capture range
Lock in range = Capture range
Lock in range = half of Capture range
7808 IC is a fixed voltage regulator of
9 V 10 V
The basic difference between a series regulator and shunt regulator is
The amount of current that can be handled
The position of the control element
The type of sample circuit
The type of error detector
Output voltage of LM337 can be adjusted from
-1.2 V to 37 V
-1.2 V to -37 V
-1.2 V to -37 V 1.2 V to 37 V

Q2	Solve any Four out of Six5	marks each
А	Draw the voltage follower using op-amp and show that its ga	in is unity.
В	Draw the functional block diagram of op-amp and explain ea	ch block.
С	Compare comparator and Schmitt trigger	
D	Draw and explain Full wave precision rectifier using op-amp	
Е	Explain Voltage controlled oscillators (VCO) with block diag	gram
	Define following terms for D/A converters:	
F	i) Resolution,	
	ii) Accurecy	

Q3.	Solve any Two Questions out of Three	10 marks each
А	Discuss classification of active filters and explain the fre each type.	quency response of
В	Explain the functional block diagram of IC 723 and state features.	e its important
С	Draw neat circuit diagram and explain the operation of s approximation type analog to digital converter. What are and disadvantages	uccessive its advantages