University of Mumbai Examination 2020

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016 (Keep the required)

Examination: TE Semester V

Course Code: CSC504 and Course Name: THEORY OF COMPUTER SCIENCE

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In general how many substrings are there in the string "stamp"
Option A:	12
Option B:	16
Option C:	14
Option D:	18
Орион Б.	18
2.	\sum^k is defined as the set of all the strings from the alphabet of length k. What is \sum^k ?
Option A:	power
Option B:	alphabet
Option C:	string
Option D:	substring
3.	a finite non empty set of symbols is called a
Option A:	alphabet
Option B:	string
Option C:	word
Option D:	grammar
4.	consider a dfa which accepts strings of length 8. How many strings will it accept of length 7 which begins with 10 over the the Σ ={0,1}.
Option A:	60
Option B:	62
Option C:	128
Option D:	64
5.	construct the re for the statement: strings containing atleast 1 a
Option A:	a*b
Option B:	a*ba*

Option C:	(a+b)*a(a+b)*
Option D:	b*
r	
6.	the language of all words with at least 2 a's can be described by the
	regular expression
Option A:	(ab)*a and a (ba)*
Option B:	(a + b)* ab* a (a + b)*
Option C:	
	b* ab* a (a + b)*
Option D:	all of these
7.	The granter formation for the following larger of The act of states
7.	The regular Expression for the following language: <i>The set of strings</i>
	over the alphabet {0,1} starting with 0.
Option A:	(0+1)*1
Option B:	0(0+1)*
Option C:	0*1
Option D:	0*(0+1)*
8.	A given grammar is called ambiguous if
Option A:	two or more productions have the same non-terminal on the left hand side
Option B:	a derivation tree has more than one associated sentence
Option C:	there is a sentence with more than one derivation tree corresponding to it
Option D:	brackets are not present in the grammar
9.	What is the type of language accepted by a Push down Automata according to
7.	Chomsky's Hierarchy?
Option A:	Type0
Option B:	Type1
Option C:	Type2
Option D:	Type3
10.	Number of tuples used in defining a Grammar:
Option A:	3
Option B:	4
Option C: Option D:	5 6
орион D.	
11.	A push down automata is different than finite automata by:
Option A:	Its memory
Option B:	Number of states
Option C:	Both memory as well as states
Option D:	None of these
12.	In definition of PDA M=(Q, Σ,Γ, q0,Z0,A,δ) what Γ represents?
Option A:	Initial stack symbol
Option B:	Stack alphabet
Option C:	Finite set of states

Option D:	Transition function		
13.	A pushdown automata isif there is at most one transition to each configuration		
Option A:	Nondeterministic		
Option B:	Deterministic		
Option C:	Non finite		
Option D:	Finite		
14.	A PDA machine configuration (q, a, X) can be correctly represented as:		
Option A:	(unprocessed input, stack content, current state)		
Option B:	(current state, unprocessed input, stack content)		
Option C:	(current state, stack content, unprocessed input)		
Option D:	none of the mentioned		
15.	The law was a great and by Trudy a great in a fa-		
	The language recognized by Turing machine is:		
Option A: Option B:	Context free language		
	Context sensitive language		
Option C:	Recursively enumerable language		
Option D:	Regular language		
16.	In definition of TM T= $(Q, \Sigma, \Gamma, q0, \delta)$ what Γ represents?		
Option A:	Tape alphabets		
Option B:	Input symbols		
Option C:	Transition function		
Option D:	Initial state		
1.7			
17.	Halting state of Turing machine are:		
Option A:	Start and stop		
Option B:	Accept and reject		
Option C:	Start and reject		
Option D:	Reject and allow		
18.	Recursive languages are also known as:		
Option A:	Undecidable		
Option B:	Decidable		
Option C:	Sometimes decidable		
Option D:	None of the mentioned		
10			
19.	If there exists a language L, for which there exists a TM, T, that accepts every word		
0 4: 4	in L and either rejects or loops for every word that is not in L, is called		
Option A:	Recursive		
Option B:	Recursively enumerable		
Option C:	NP-HARD		
Option D:	None of these		
20.	Which of the following problems is solvable?		
Option A:	Determining of a universal Turing machine and some input will halt		
opnon 71.	Second in put will have		

Option B:	Determining of an arbitrary Turing machine is an universal Turing machine	
Option C:	Determining of a universal Turing machine can be written for fewer than k	
	instructions for some k	
Option D:	Writing a universal Turing machine	

Q2 20 Marks Total	Solve any Two Questions out of Three	10 marks each
A	Change the occurrence of abb into aba using a Moore Machine.	
В	Draw an NFA for the RE (a+b)*baa* and Convert it to DFA	A .
С	What is Pumping Lemma for Context Free Languages? Exp	plain

Q3. 20 Marks Total	Solve any Two Questions out of Three	10 marks each
A	Design a PDA for Odd Palindromes.	
В	Design a Turing machine for adding unary numbers m+n.	
С	Explain the Halting Problem with examples	