University of Mumbai

Examination 2020

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: ECC503 and Course Name: Electromagnetic Engineering

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
	compulsory and carry equal marks		
1.	Which of the following is an example of a transmission line?		
Option A:	Coaxial cable		
Option B:	Twisted pair cable		
Option C:	Optical fiber cable		
Option D:	All of the above		
opuon 2.			
2.	If a normal Smith chart is rotated by 180 degrees, we get		
Option A:	ZY Smith chart		
Option B:	Impedance Smith chart		
Option C:	Admittance Smith chart		
Option D:	Black Magic Design		
3.	A transmission line has R = 0.1 ohms/m, G = 0.01 mho/m, L = 0.01 $\mu H/m$, C =		
	100 pF/m. Find the characteristic impedance of the line at 2 GHz		
Option A:	100+j0.716 ohms		
Option B:	100+j0.716 ohms/m		
Option C:	10+j0.0358 ohms		
Option D:	10+j0.0358 ohms/m		
4.	Two charges of 1 C are placed in air such that the distance between them is		
	$\sqrt{9 * 10^9}$. Determine the magnitude of force exerted on each of them		
Option A:	2 N		
Option B:	1 N		
Option C:	0.5 N		
Option D:	4 N		
5.	The relation between electric field and potential is given by (bold letters indicate		
	vectors)		
Option A:	$E = \nabla V$		
Option B:	$E = -\nabla V$		
Option C:	$E = -\nabla \times V$		
Option D:	$E = \nabla \times V$		
1			
6.	A Gaussian sphere has two charges Q_1 and $-Q_2$ inside it while another two		
	charges Q ₃ and Q ₄ are outside the sphere. Determine the total electric flux density		
	inside the sphere		

Option A:	$Q_1 + Q_2 + Q_3 + Q_4$
Option B:	$Q_1 + Q_2 + Q_3 + Q_4$ $Q_1 + Q_2$
Option D:	$Q_1 + Q_2$ $Q_1 - Q_2$
Option D:	$Q_1 - Q_2 - Q_3 - Q_4$
option D.	
7.	An infinite sheet charge has a charge density of $8.85 * 10^{-12} \frac{c}{m^2}$. Determine the
	magnitude of electric field at a distance of 1 m above the sheet charge.
Option A:	0.5 V/m
Option B:	2 V/m
Option C:	1 V/m
Option D:	5 V/m
8.	Choose the best definition of a dipole.
Option A:	A pair of equal and like charges located at the origin
Option B:	A pair of unequal and like charges located at the origin
Option C:	A pair of equal and unlike charges separated by a small distance
Option D:	A pair of unequal and unlike charges separated by a small distance
9.	Calculate the charge density when a potential function $x^2 + y^2 + z^2$ is in air (in
Ontion A.	nC/m^3) $1/6\pi$
Option A:	
Option B: Option C:	6/2π 12/6π
Option D:	12/6π 10/8π
Option D.	10/8/
10.	The unit of $\nabla \times H$ is
Option A:	Ampere
Option B:	Ampere/meter
Option D:	Ampere/meter ²
Option D:	Ampere-meter
option D.	
11.	If the tangential component of electric field in medium 1 is 2 V/m, what will be
	the tangential component of electric field in medium 2? (Assume both the
	mediums are dielectrics)
Option A:	2 V/m
Option B:	1 V/m
Option D: Option C:	-2 V/m
Option D:	0 V/m
option D.	
12.	The skin depth in a poor conductor is independent of
Option A:	permittivity
Option B:	permeability
Option D:	frequency
Option D:	None of these
Option D.	
13.	An electromagnetic wave propagating in free space has a magnetic field intensity
15.	An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x$ A/m. What will be total power passing
	through a square plate of side 20 cm located in the plane $x+y=2$?
Option A:	0.53 W
Option A.	0.00 11

Option B:	1.88 W
Option C:	18.8 mW
Option D:	53.31 mW
1	
14.	Which of the following statements is an implication of Maxwell's equations?
Option A:	Interdependence of electric and magnetic fields
Option B:	Finite speed of propagation of an electromagnetic wave
Option C:	Light itself is an electromagnetic wave
Option D:	All of the above
1	
15.	Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors)
Option A:	$\nabla \cdot \boldsymbol{B} = 0$
Option B:	$oldsymbol{ abla}\cdotoldsymbol{D}= ho_{v}$
Option C:	$\nabla \cdot \boldsymbol{B} = 0$ $\nabla \cdot \boldsymbol{D} = \rho_{v}$ $\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$ $\nabla \times \boldsymbol{E} = \boldsymbol{B}$
Option D:	$\nabla \times E = B$
16.	A uniform plane wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
Option A:	10 %
Option B:	25 %
Option C:	50 %
Option D:	75 %
17.	Name the physical quantity which has the unit C/m^2
Option A:	Electric Field
Option B:	Magnetic Field
Option C:	Magnetic Flux
Option D:	Electric Flux Density
10	
18.	Transit time effect is dominant
Option A:	When the frequency is low
Option B:	When the length of the transmission line is high enough
Option C:	When the length of the transmission line is high enough
Option D:	Both b and c
19.	Which of the following is a result of transit time effect at high frequencies?
Option A:	KVL and KCL cannot be applied
Option B:	KVL and KCL can be applied easily
Option C:	Potential along the transmission line is same at all points
Option D:	None of the above
•	
20.	Reflection coefficient is defined as the ratio of
Option A:	Forward travelling wave to the backward travelling wave
Option B:	Backward travelling wave to the forward travelling wave
Option C:	Forward standing wave to the backward standing wave
Option D:	Backward standing wave to the forward standing wave

Q2	Solve any Two Questions out of Three10 marks each
А	Derive an expression for electric field intensity due to infinite line charge
В	Given V= $2x^2y$ -5xz, find V, E, D and ρ_v at P (-4, 3, 6) m
С	Calculate input impedance of a lossless transmission line terminated by a load impedance of 100+j100 ohms and having a characteristic impedance of 50 ohms. The operating frequency is 3 GHz. Assume length as 0.35 lambda

Q3	Solve any Two Questions out of Three	10 marks each
А	Obtain the Poisson's and Laplace's equations used to solve problems for conducting plates described as V (z=0) - 0 V and $V (z=2 mm) = 50 VDetermine V, D, E$	boundary
В	Derive Maxwell's equations in integral and point form for static fields.	
С	A media has the following properties $\varepsilon_r = 1$; $\mu_r = 1$; $\sigma_r = 1$; $\mu_r = 1$; $\mu_r = 1$; $\sigma_r = 1$; $\mu_r = 1$; $\mu_r = 1$; $\sigma_r =$	constant in dB,