University of Mumbai

Examination 2020

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: ELX503 and Course Name: Engineering Electromagnetics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Which of the following is an example of a transmission line?		
Option A:	Coaxial cable		
Option B:	Twisted pair cable		
Option C:	Optical fiber cable		
Option D:	All of the above		
2.	If a normal Smith chart is rotated by 180 degrees, we get		
Option A:	ZY Smith chart		
Option B:	Impedance Smith chart		
Option C:	Admittance Smith chart		
Option D:	Black Magic Design		
3.	A transmission line has R = 0.1 ohms/m, G = 0.01 mho/m, L = 0.01 $\mu H/m$, C =		
	100 pF/m. Find the characteristic impedance of the line at 2 GHz		
Option A:	100+j0.716 ohms		
Option B:	100+j0.716 ohms/m		
Option C:	10+j0.0358 ohms		
Option D:	10+j0.0358 ohms/m		
4.	Two charges of 1 C are placed in air such that the distance between them is		
	$\sqrt{9 \times 10^9}$. Determine the magnitude of force exerted on each of them		
Option A:	2 N		
Option B:	1 N		
Option C:	0.5 N		
Option D:	4 N		
-1			
5.	The relation between electric field and potential is given by (bold letters indicate		
	vectors)		
Option A:	$E = \nabla V$		
Option B:	$E = -\nabla V$		
Option C:	$E = -\nabla \times V$		
Option D:	$E = \nabla \times V$		
6.	A Gaussian sphere has two charges Q_1 and $-Q_2$ inside it while another two		
	charges Q ₃ and Q ₄ are outside the sphere. Determine the total electric flux density		
	inside the sphere		

Option A:	$Q_1 + Q_2 + Q_3 + Q_4$
Option B:	$Q_1 + Q_2$
Option C:	$Q_1 - Q_2$
Option D:	$Q_1 - Q_2 - Q_3 - Q_4$
7.	An infinite sheet charge has a charge density of $8.85 \times 10^{-12} \frac{C}{2}$. Determine the
	magnitude of electric field at a distance of 1 m above the sheet charge.
Option A:	0.5 V/m
Option B:	2 V/m
Option C:	1 V/m
Option D:	5 V/m
8.	Choose the best definition of a dipole.
Option A:	A pair of equal and like charges located at the origin
Option B:	A pair of unequal and like charges located at the origin
Option C:	A pair of equal and unlike charges separated by a small distance
Option D:	A pair of unequal and unlike charges separated by a small distance
1	
9.	Calculate the charge density when a potential function $x^2 + y^2 + z^2$ is in air (in
	nC/m ³)
Option A:	1/6π
Option B:	$6/2\pi$
Option C:	12/6π
Option D:	10/8π
10.	The unit of $\nabla \times H$ is
Option A:	Ampere
Option B:	Ampere/meter
Option C:	Ampere/meter ²
Option D:	Ampere-meter
11	
	A quarter wave monopole antenna operates at 25 MHz. The length of antenna is
Option A:	3 m
Option B:	48 m
Option C:	6 m
Option D:	12 m
12.	As the aperture area of an antenna increases, its gain
Option A:	increases
Option B:	reduces
Option C:	remains same
Option D:	unpredictable
13.	An antenna has uniform radiation intensity in all directions. The directivity of the
	antenna is
Option A:	1
Option B:	0
Option C:	0.5
Option D:	0.25

14.	Which of the following statements is an implication of Maxwell's equations?		
Option A:	Interdependence of electric and magnetic fields		
Option B:	Finite speed of propagation of an electromagnetic wave		
Option C:	Light itself is an electromagnetic wave		
Option D:	All of the above		
1			
15.	Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors)		
Option A:	$\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$		
Option B:	$\mathbf{\nabla} \cdot \mathbf{D} = ho_v$		
Option C:	$\nabla \times H = J + \frac{\partial D}{\partial t}$		
Option D:	$\nabla \times E = B$		
16.	A uniform plane wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?		
Option A:	10 %		
Option B:	25 %		
Option C:	50 %		
Option D:	75 %		
17.	Name the physical quantity which has the unit C/m^2		
Option A:	Electric Field		
Option B:	Magnetic Field		
Option C:	Magnetic Flux		
Option D:	Electric Flux Density		
18.	FDM uses which of the following equations		
Option A:	Maxwell's equations		
Option B:	Laplace's equation		
Option C:	Current Continuity equation		
Option D:	Poisson's equation		
19.	Using Finite Difference Method, calculate the potentials at nodes 1 and 2 for the		
	following figure		
	30V		
	1 2		
	-20V 20V		
	Jo Vo		
Option A:	6 V, 14 V		
Option B:	14 V, 6 V		
Option C:	3 V, 7 V		
Option D:	7 V, 3 V		
20.	Reflection coefficient is defined as the ratio of		

Option A:	Forward travelling wave to the backward travelling wave
Option B:	Backward travelling wave to the forward travelling wave
Option C:	Forward standing wave to the backward standing wave
Option D:	Backward standing wave to the forward standing wave

Q2	Solve any Two Questions out of Three	10 marks each
А	Derive an expression for electric field intensity due to infini	te line charge
В	Given V= $2x^2y$ -5xz, find V, E, D and ρ_v at P (-4, 3, 6) m	
С	Calculate input impedance of a lossless transmission line load impedance of 100+j100 ohms and having a character of 50 ohms. The operating frequency is 3 GHz. Assume lambda	terminated by a ristic impedance e length as 0.35

Q3	Solve any Two Questions out of Three	10 marks each
А	Compare FDM, FEM and MOM	
В	Derive Maxwell's equations in integral and point form for	static field
С	Explain sky wave propagation. Calculate the skip distance for flat ear with MUF of 20 MHz if the wave is reflected from a height of 200 k where the maximum value of refractive index of the earth is 0.95	