University of Mumbai

Examination 2020

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: **BE Civil Engineering**

Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: CEC- 503 and Course Name: Applied Hydraulics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Momentum is a quantity
Option A:	Scalar
Option B:	Vector
Option C:	Infinite
Option D:	Zero
2.	Energy per unit weight of water measured with respect to the datum is called as
Option A:	Total energy
Option B:	Specific energy
Option C:	Velocity head
Option D:	Datum head
3.	The fluid coming into the centrifugal pump is accelerated by
Option A:	Throttle
Option B:	Impeller
Option C:	Nozzle
Option D:	Governor
4.	Two Pelton wheels A and B have the same specific speed and are working under
	the same head. Wheel A produces 400 kW at 1000 rpm. If B produces 100 kW, then its rpm is
Option A:	4000
Option B:	2000
Option C:	1500
Option D:	1250
5.	Calculate the mean hydraulic radius for a channel having 20m2 cross sectional
	area and 50m of wetted perimeter
Option A:	0.4 m
Option B:	0.5 m
Option C:	0.6 m
Option D:	0.3 m

6.	Impulse Momentum equation is based on
Option A:	Newton's First law of motion
Option B:	Newton's Second law of motion
Option D:	Newton's third law of motion
Option D:	Law of conservation of mass
Option D.	
7.	The propulsive force drives the jet in the
Option A:	Backward direction
Option B:	Forward direction
Option C:	Perpendicular direction
Option D:	Parallel movement
option D.	
8.	A horizontal water jet with a velocity of 10 m/s and cross sectional area of 10 mm2 strikes a flat plate held normal to the flow direction. The density of water is 1000 kg/m3. The total force on the plate due to the jet is
Option A:	100 N
Option B:	10 N
Option C:	1 N
Option D:	0.1 N
9.	If the velocity of curved vane is equal to the velocity of jet, then the efficiency of the wheel will be
Option A:	50 %
Option B:	100 %
Option C:	59.2 %
Option D:	0%
10.	The ratio of normal force of jet of water on a plane inclined at an angle of 30° as
	compare to that when the plate normal to jet is
Option A:	$1/\sqrt{2}$
Option B:	1/2
Option C:	1
Option D:	2
11.	Centrifugal pump is a
Option A:	Turbomachinery
Option B:	Flow regulating device
Option C:	Drafting device
Option D:	Intercooling device
12.	A 1: 50 scale model of a spillway is to be tested in the laboratory. The discharge in the prototype is 1000 m3/s. The discharge to be maintained in the model test is
Option A:	0.08 m3/s
Option B:	5.7 m3/s
Option C:	0.057 m3/s
Option D:	0.57 m3/s
13.	What is the angle made (in degree) by the sloping side when the trapezoidal channel discharges to the maximum extent?
Option A:	30
L →	

Option B:	45		
Option D:	60		
Option D:	90		
Option D.			
14.	A surface profile is a measure of		
Option A:	Temperature changes		
Option B:	Pressure changes		
Option C:	Flow changes		
Option D:	Volumetric changes		
opuon 2.	· · · · · · · · · · · · · · · · · · ·		
15.	The repeating variables in dimensional analysis should :		
Option A:	include the dependent variable		
Option B:	have amongst themselves all the basic dimensions		
Option C:	be derivable from one another		
Option D:	exclude one of the basic dimensions		
1			
16.	In Inward radial flow reaction turbine if angle made by absolute velocity with its		
	tangent is 90 degrees and component of whirl is zero at outlet is		
Option A:	Radial inlet discharge		
Option B:	Radial outlet discharge		
Option C:	Flow ratio		
Option D:	Speed ratio		
17.	is defined as ratio between power delivered to runner and power		
	supplied at inlet of turbine.		
Option A:	Mechanical efficiency		
Option B:	Volumetric efficiency		
Option C:	Hydraulic efficiency		
Option D:	Overall efficiency		
18.	The velocity of the flow through the Kaplan turbine is 25m/s. The available head		
	of the turbine is 60m. Find the flow ratio of the turbine (take $g=10m/s2$).		
Option A:	0.65		
Option B:	0.72		
Option C:	0.69		
Option D:	0.80		
19.	Dynamic similarity is said to exists between two fluid flows when at		
	corresponding points there are:		
Option A:	Kinematic similarity and geometric similarity		
Option B:	Geometric similarity and similarity of forces involved		
Option C:	Interaction between inertia, viscous and pressure forces		
Option D:	interaction of inertia and viscous forces		
20.	The formation of vapour cavities is called		
Option A:	Static pressure drop		
Option B:	Cavitation		
Option C:	Isentropic expansion		
Option D:	Emulsion		

Q2.	Solve any Four out of Six5 marks each	1
А	Write a note on multistage pump	
В	Explain term hydraulic jump. Drive an expression for the depth of	
D	hydraulic jump in term of the upstream Froude number.	
С	Explain Undistorted Model. What are the use of Undistorted Model.	
D	Explain different type of efficiencies of hydraulic turbine	
E	Derive conditions for the most economical trapezoidal channel section	
F	Derive expression for force exerted by jet on stationary curved plate whe	en
Г	jet striking at Centre.	

OR

Q3.	Solve any Four out of Six	5 marks each
А	State and derive moment of momentum equation	
В	What are the methods of dimensional analysis) Explain it.	
С	Derive condition for most economical circular section velocity	for maximum
D	What is jet propulsion of ship? Explain with neat sketch.	
Е	Define the specific speed of a turbine. Derive an expression speed	for the specific
F	Compare between impulse turbine and reaction turbine.	