## University of Mumbai

## Examination 2020

Program: Civil Engineering
Curriculum Scheme: Rev2019
Examination: First/Second/Third/Final Year Semester I/II/III/IV/V/VI/VII/VIII
Course Code: and Course Name: Engineering Mathematics III
Time: 1 hour

For the students:- All the Questions are compulsory and carry equal marks .

| Q1. | Find the Laplace transform of $\mathrm{f}(\mathrm{t}), \mathrm{f}(\mathrm{t})=\mathrm{a}, 0<\mathrm{t}<\mathrm{b}$ and $\mathrm{f}(\mathrm{t})=0, \mathrm{t}>\mathrm{b}$ |
| :---: | :---: |
| Option A: | $\frac{a b}{s}\left(1-e^{-b t}\right)$ |
| Option B: | $\frac{b}{s}\left(1-e^{-b t}\right)$ |
| Option C: | $\frac{a}{s}\left(1-e^{-b t}\right)$ |
| Option D: | $\frac{-a}{s}\left(1-e^{-b t}\right)$ |
| Q2. | Find the Laplace transform of $4 \mathrm{t}^{2}+\sin 3 \mathrm{t}+\mathrm{e}^{2 t}$ |
| Option A: | $\frac{9}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{1}{s-2}$ |
| Option B: | $\frac{8}{s^{3}}+\frac{8}{s^{2}+3^{2}}+\frac{1}{s-2}$ |
| Option C: | $\frac{8}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{4}{s-2}$ |
| Option D: | $\frac{8}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{1}{s-2}$ |
| Q3. | Construct an analytic function whose real part is $x^{4}-6 x^{2} y^{2}+y^{4}$ |
| Option A: | $\mathrm{z}^{4}+\mathrm{c}$ |
| Option B: | $\mathrm{ez}^{4}+\mathrm{c}$ |
| Option C: | $\mathrm{e}^{4}+\mathrm{c}$ |
| Option D: | $\mathrm{x}^{4}+\mathrm{c}$ |
| Q4. | Find the Inverse Laplace transform $\frac{1}{s(s+a)}$ |
| Option A: | $\frac{1-e^{-a t}}{a b}$ |
| Option B: | $\frac{1-e^{-a t}}{a}$ |
| Option C: | $\frac{1-e^{-t}}{a}$ |
| Option D: | $\frac{1-e^{a t}}{a}$ |
| Q5. | Find $L^{-1}\left[\frac{1}{S\left(S^{2}+4\right)}\right]$ |

## Examination 2020



Examination 2020

| Option D: | 4 |
| :---: | :---: |
| Q12. | In Fourier integral an is zero when function is |
| Option A: | Even |
| Option B: | Odd |
| Option C: | Real |
| Option D: | Neither even nor odd |
|  |  |
| Q13. | If $f(x)$ is odd function then Fourier integral $f(x)$ reduced to |
| Option A: | Cosine |
| Option B: | Sine |
| Option C: | Cosine and sine |
| Option D: | 0 |
|  |  |
| Q14. | What are periodic signals? |
| Option A: | The signals which change with time |
| Option B: | The signals which change with frequency |
| Option C: | The signal that repeats itself in time |
| Option D: | The signals that repeat itself over a fixed frequency |
|  |  |
| Q15. | Find the Laplace transform of $\sin 5 \mathrm{t}$ |
| Option A: | $\frac{5}{s^{2}+5^{2}}$ |
| Option B: | $\frac{s}{s^{2}+5^{2}}$ |
| Option C: | $\frac{5}{s^{2}-5^{2}}$ |
| Option D: | $\frac{s}{s^{2}-5^{2}}$ |
|  |  |
| Q16. | Poles of $f(z)=\frac{1}{(z-1)(z+2)}$ |
| Option A: | 1,-2 |
| Option B: | -1,-2 |
| Option C: | -1,2 |
| Option D: | 1,2 |
|  |  |
| Q17. | Poles of $f(z)=\frac{z}{(z+3)^{2}(z+2)}$ |
| Option A: | -3 of order 2 and -2 of order 1 |
| Option B: | -3 of order 2 and -2 of order 2 |
| Option C: | 3 of order 2 and -2 of order 1 |
| Option D: | -3 of order 1 and -2 of order 2 |
|  |  |
| Q18. | Find residue at $\mathrm{z}=1$ for $f(z)=\frac{z}{(z+2)^{2}(z-1)}$ |
| Option A: | 1/9 |
| Option B: | -1/9 |
| Option C: | 2/9 |
| Option D: | -2/9 |

Examination 2020

|  |  |
| :---: | :--- |
| Q19. | The partial differential equation $x y \frac{\partial z}{\partial x}=\frac{\partial^{2} z}{\partial y^{2}}$ |
| Option A: | Elliptic |
| Option B: | Hyperbolic |
| Option C: | Parabolic |
| Option D: | Not defined |
|  |  |
| Q20. | The partial differential equation5 $\frac{\partial^{2} z}{\partial y^{2}}+6 \frac{\partial^{2} z}{\partial y^{2}}=x y$ |
| Option A: | Elliptic |
| Option B: | Hyperbolic |
| Option C: | Parabolic |
| Option D: | Not defined |
|  |  |


| Q2 <br> (20 Marks) | Solve any Four out of Six |
| :---: | :--- |
| A | Find the Laplace transform of $\frac{1}{t} e^{-t} \operatorname{sint}$ |$\quad$ 5 marks each


| Q3 <br> $\mathbf{( 2 0}$ <br> Marks) | Solve any Four out of Six $\quad$ 5 marks each |
| :--- | :--- |
| A | Find the Laplace transform of $\operatorname{cost} \cos 2 t \cos 3 t$ |
| B | Find the inverse Laplace transform of $\frac{s+2}{s^{2}(s+3)}$ |
| C | Determine whether the function $f(z)=x^{2}-y^{2}+2 i x y$ is analytic and if so Find <br> its derivative. |
| D | Find the Fourier series for $f(x)=e^{-\|x\|}$ in $(-\pi, \pi)$. |
| E | Find Eigen value and Eigen vector of matrix $[2-1112-11-12]$ |
| F | Solve by Crank Nicholson simplified formula $\frac{\partial^{2} u}{\partial x^{2}}-16 \frac{\partial u}{\partial t}=0, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(1, \mathrm{t})-$ <br> $200 \mathrm{t}, \mathrm{u}(\mathrm{x}, 0)=0$ taking $\mathrm{h}=0.25$ for one time step.. |

