University of Mumbai

Examination 2020

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: B.E. Computer Engineering

Curriculum Scheme: 2012

Examination: BE Semester VII

Course Code: CPC701 and Course Name: Digital Signal Processing

Time: 2 hour

_

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	$\delta(n) =$
Option A:	u(n) + u(n-1)
Option B:	u(n) u(n-1)
Option C:	u(n) - u(n-1)
Option D:	u(n-1) - u(n)
2.	For a power signal, $P = _$ and $E = _$
Option A:	Finite,Infinite
Option B:	Finite, Non-zero
Option C:	Infinite,Infinite
Option D:	Finite,Finite
3.	Find the cross correlation of two finite length sequences:
	$x(n) = \{2, 3, 1, 4\}$ and $y(n) = \{1, 3, 2, 1\}$
Option A:	{7,13,17,14,2,13,4}
Option B:	$\{2, 7, 13, 17, 14, 13, 4\}$
Option C:	{7,13,13,14,12,13,4}
Option D:	{7,12,17,14,3,2,5}
4.	The discrete time function defined as $u(n)=n$ for $n \ge 0$; $u(n)=0$ for $n < 0$ is an:
Option A:	Unit sample signal
Option B:	Unit step signal
Option C:	Unit ramp signal
Option D:	Unit Sequence signal
5	What is the DET of the four point sequence $y(n) = \{1, 2, 3, 4\}$?
Ontion Δ .	$\{10, -2+2i, -2, -22i\}$
Ontion R.	(10, 2, 2, 2j, 2, 2, 2j)
Ontion C.	$\{-2, 10, 2+2i, 2-2i\}$
Option D:	$(10\ 10\ 10\ 2)$
option D.	
6.	For DIT FFT, the input is in order and the output is in order.

Option A:	bit reverse, normal		
Option B:	normal,normal		
Option C:	normal, bit reverse		
Option D:	reverse, bit reverse		
7.	In FFT there are butterflies per stage of the computation process.		
Option A:	N*N		
Option B:	Ν		
Option C:	2N		
Option D:	N/2		
8.	The total number of complex multiplications in FFT is		
Option A:	N/2log ₂ N		
Option B:	Nlog ₂ N		
Option C:	N*N		
Option D [.]	2N		
-ruen D.			
9.	Time reversal of a discrete time signal refers to		
Option A:	y[n] = x[-n+k]		
Option B:	y[n] = x[-n]		
Option C:	v[n] = x[-n-k]		
Option D:	y[n] = x[n-k]		
10.	What is the result of taking more samples during the quantization process?		
Option A:	More errors in the analog-to-digital conversion		
Option B:	More bit requirements		
Option C:	More accurate signal representation		
Option D:	More bit requirements and more accurate signal representation		
11.	The cost of the digital processors is cheaper because		
Option A:	Processor allows time sharing among a number of signals		
Option B:	The hardware is cheaper		
Option C:	Require less maintenance		
Option D:	Less power consumption		
12.	In DSP processors, which among the following maintains the track of addresses		
	of input data as well as the coefficients stored in data and program memories?		
Option A:	Data Address Generators (DAGs)		
Option B:	Program sequences		
Option C:	Barrel Shifter		
Option D:	MAC		
13.	Carl Pearson's Correlation Coefficient is a linear correlation coefficient that		
	returns a value of between		
Option A:	π and π		
Option R:	$-\lambda$ and λ		
Option C:	-1 and $+1$		
Option C.			

Option D:	0 and π		
14.	DIT algorithm divides the sequence into		
Option A:	Positive and negative values		
Option B:	Even and odd samples		
Option C:	Upper higher and lower spectrum		
Option D:	Small and large samples		
option D.			
15.	For signal $x(n) = \left(\frac{1}{2}\right)^n u(n)$ what is the energy?		
Option A:	4/3		
Option B:	3/4		
Option C:	1/2		
Option D:	1		
16.	If $x(n) = \{1,2,3,4\}$ what is a circular shifted signal $x(-n+1)$?		
Option A:	{1,4,3,2}		
Option B:	{4,1,2,3}		
Option C:	{2,1,4,3}		
Option D:	{4,3,2,1}		
17.	A system whose output response is given by $y(n) = x(n + 2)$		
Option A:	Memoryless System		
Option B:	Memory-Based System		
Option C:	Static System		
Option D:	Step System		
18.	Discrete Fourier Transform of impulse signal is		
Option A:	0		
Option R:			
Option C:	1		
Option D:	I N		
Option D.			
19.	The discrete fourier transform of circular convolution of two signals x(n) and h(n) is equivalent to		
Option A:	Multiplication of DFTs of two sequences		
Option B:	Addition of DFTs of two sequence		
Option C:	Squaring of DFTs of two sequences		
Option D:	Division of DFTs of two sequences		
20.	The first M-1 values of the output sequence in every step of Overlap save method of filtering of long sequence are		
Option A:	added		
Option B:	discarded		
Option C:	appended		
- r · • ••			

Option D:	overlapped
-----------	------------

Q2	Solve any Two Questions out of Three	10 marks each
А	Explain any 5 properties of Discrete Fourier Transform	
	For $x(n) = \{1,3,-1,2,0,4\}$ [Pointer at first value of the following discrete time signals	<i>signal]</i> , plot the
В	(i) x (n+2) (ii) x(-n-1) (iii) 2x(n) (iv) x(n-1). δ (n-3) (v) x(n).u(n-2)	
С	Compute linear convolution of the causal sequences $x[n] = \{1, 2, 3, -1, 2, -2, 0, -1\}$ and $h[n]=\{-1, 2, 1\}$ us method.	sing overlap save

Q3.	Solve any Two Questions out of Three	10 marks each
А	Explain with the example significance of Carl's Correlation Algorithm in digital signal processing.	Coefficient
В	Write a detailed note on DSP Processor.	
С	Write a detailed note on TMS320.	