University of Mumbai

Examination 2020

Program: Information Technology

Curriculum Scheme: Rev2019
Examination: SE Semester III
Course Code: \qquad and Course Name: Engineering Mathematics
Time: $\mathbf{2}$ hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find the Laplace transform of $f(t), f(t)=a, 0<t<b$ and $f(t)=0, t>b$
Option A:	$\frac{a b}{s}\left(1-e^{-b t}\right)$
Option B:	$\frac{b}{s}\left(1-e^{-b t}\right)$
Option C:	$\frac{a}{s}\left(1-e^{-b t}\right)$
Option D:	$\frac{-a}{s}\left(1-e^{-b t}\right)$
2.	Find the Laplace transform of $4 t^{\mathbf{2}}+\sin 3 \mathrm{t}+\mathrm{e}^{\mathbf{2 t}}$
Option A:	$\frac{9}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{1}{s-2}$
Option B:	$\frac{8}{s^{3}}+\frac{8}{s^{2}+3^{2}}+\frac{1}{s-2}$
Option C:	$\frac{8}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{4}{s-2}$
Option D:	$\frac{8}{s^{3}}+\frac{3}{s^{2}+3^{2}}+\frac{1}{s-2}$
3.	Find the Laplace transform of $\mathrm{e}^{4 t} \cdot \sin ^{3} \mathrm{t}$
Option A:	$\frac{6}{\left(s^{2}-8 s+17\right)\left(s^{2}-8 s+25\right)}$
Option B:	$\frac{64}{\left(s^{2}-8 s+17\right)\left(s^{2}-8 s+25\right)}$
Option C:	$\frac{6}{\left(s^{2}-8 s+17\right)\left(s^{2}-8 s+20\right)}$
Option D:	$\frac{6}{\left(s^{2}-7 s+17\right)\left(s^{2}-8 s+25\right)}$
4.	Find the Inverse Laplace transform $\frac{1}{s(s+a)}$
Option A:	$\frac{1-e^{-a t}}{a b}$
Option B:	$\frac{1-e^{-a t}}{a}$
Option C:	$\frac{1-e^{-t}}{a}$

Option B:	0
Option C:	2/n
Option D:	4
12.	In Fourier integral an is zero when function is
Option A:	Even
Option B:	Odd
Option C:	Real
Option D:	Neither even nor odd
13.	If $f(x)$ is odd function then Fourier integral $f(x)$ reduced to
Option A:	Cosine
Option B:	Sine
Option C:	Cosine and sine
Option D:	0
14.	What are periodic signals?
Option A:	The signals which change with time
Option B:	The signals which change with frequency
Option C:	The signal that repeats itself in time
Option D:	The signals that repeat itself over a fixed frequency
15.	Find the Laplace transform of $\sin 5 \mathrm{t}$
Option A:	$\frac{5}{s^{2}+5^{2}}$
Option B:	$\frac{s}{s^{2}+5^{2}}$
Option C:	$\frac{5}{s^{2}-5^{2}}$
Option D:	$\frac{s}{s^{2}-5^{2}}$
16.	Construct an analytic function whose real part is e^{x} cosy
Option A:	$f(z)=\int e^{z} \cdot d z=e a^{z}+c$
Option B:	$f(z)=\int e^{z} \cdot d z=a^{z}+c$
Option C:	$f(z)=\int e^{z} \cdot d z=e^{a z}+c$
Option D:	$f(z)=\int e^{z} \cdot d z=e^{z}+c$
17.	Construct an analytic function whose imaginary part is $\mathrm{e}^{-x}(\mathrm{y}$ cosy-x siny)
Option A:	$\mathrm{ze}^{-\mathbf{z}}+\mathrm{c}$
Option B:	$\mathrm{ze} \mathrm{e}^{\text {z }} \mathrm{c}$
Option C:	$\mathrm{ze}^{\text {az }}+\mathrm{c}$
Option D:	$\mathrm{ze}^{\text {bz }}+\mathrm{c}$
18.	Construct an analytic function whose imaginary part is $\tan ^{-1} \frac{y}{x}$
Option A:	$\tan \mathrm{z}+\mathrm{c}$
Option B:	$\sec \mathrm{z}+\mathrm{c}$

Option C:	$\mathrm{e}^{\mathrm{x}} \mathrm{z}+\mathrm{c}$
Option D:	$\log \mathrm{z}+\mathrm{c}$
19.	Construct an analytic function whose real part is $\mathrm{x}^{4}-6 \mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{y}^{4}$
Option A:	$\mathrm{z}^{4}+\mathrm{c}$
Option B:	$\mathrm{ez}^{4}+\mathrm{c}$
Option C:	$\mathrm{e}^{4}+\mathrm{c}$
Option D:	$\mathrm{x}^{4}+\mathrm{c}$
20.	Given $N=10, \sum d_{i}^{2}=96$. Find the rank correlation coefficient R.
Option A:	$\boldsymbol{R}=\mathbf{0 . 4 1}$
Option B:	$R=0.51$
Option C:	$R=0.25$
Option D:	$R=0.35$

Q3 $\mathbf{(2 0}$ Marks)	Solve any Four out of Six $\quad \mathbf{5}$ marks each
A	Find the Laplace transform of $\operatorname{cost} \cos 2 t \cos 3 t$
B	Find the inverse Laplace transform of $\frac{s+2}{s^{2}(s+3)}$
C	Determine whether the function $f(z)=x^{2}-y^{2}+2 i x y$ is analytic and if so Find its derivative.
D	Find the Fourier series for $f(x)=e^{-\|x\|}$ in $(-\pi, \pi)$.
E	Find the equation of line of regression y on x for the following data

