University of Mumbai

Examination 2020

Program: **CBCS** Curriculum Scheme: Rev2016 Examination: TE Semester VI

Course Code: CEC 602 and Course Name: Design and Drawing of Steel Structures

Time: 2 hour

Max. Marks: 80

01	Elastic Modulus of Steel is
Option A [•]	$1.5 \times 10^9 \text{ N/mm}^2$
Option B:	$\frac{2.0 \times 10^5 \text{ N/mm}^2}{2.0 \times 10^5 \text{ N/mm}^2}$
Option C:	$2.0 \times 10^5 \text{ N/m}^2$
Option D:	$1.5 \times 10^9 \text{ N/m}^2$
• • • • • • • • • • • • • • • • • • • •	
Q2.	What is serviceability?
Option A:	It refers to condition when structure is not usable
Option B:	It refers to services offered in the structure
Option C:	It means that the structure should perform satisfactorily under different loads,
	without discomfort to user
Option D:	It means that structure should be economically viable
Q3.	Which method is mainly adopted for design of steel structures as per IS code?
Option A:	Limit State Method
Option B:	Working Stress Method
Option C:	Ultimate Load Method
Option D:	Earthquake Load Method
Q4.	Lacing bars in a steel column should be designed to resist
Option A:	Bending moment due to 2.5% of the column load
Option B:	Shear force due to 2.5% of the column load
Option C:	2.5% of the column load
Option D:	Both (A) and (B)
<u>Q5.</u>	Which of the following relation is correct?
Option A:	Permissible Stress = Yield Stress x Factor of Safety
Option B:	Permissible Stress = Yield Stress / Factor of Safety
Option C:	Y leid Stress = Permissible Stress / Factor of Safety
Option D:	Permissible Stress = Yield Stress – Factor of Safety
06	What is the yield strength of holt of aloss 4.62
Q0.	400 N/mm^2
Option R:	240 N/mm^2
Option C.	250 N/mm ²
Option D	500 N/mm ²
Option D.	
07	Which of the following type of weld is most suitable for lap and T-joints?
Ontion A:	Fillet weld
option 11.	

Option B:	Groove weld
Option C:	Slot weld
Option D:	Plug weld
•	
Q8.	The presence of holes the strength of tension member
Option A:	does not affect
Option B:	improves
Option C:	reduces
Option D:	doubles
09.	What is the effective length when both ends of compression member are fixed?
Option A [.]	0.65L
Option B:	
Option C:	
Option D:	21
Option D.	
010	What is slenderness ratio of compression member?
$\frac{\chi^{10}}{\text{Ontion } \Lambda}$	ratio of effective length to radius of overstion
Option R:	ratio of radius of gyration to effective length
Option C:	difference of radius of gyration and effective length
Option D:	nroduct of radius of suration and offective length
Option D.	
011	Slandarness ratio of locing is limited to
Ontion A:	
Option R:	145
Option C:	500
Option D:	280
Option D.	380
012	Which of the following statement is true?
$\frac{Q12}{\text{Ontion } \Lambda}$	Number of bettens in a column should be such that member is divided into not
Option A.	less than three bays
Ontion B:	Number of battens in a column should be such that member is divided into less
Option D.	than three bays
Ontion C:	Number of battens in a column should be such that member is divided into less
option C.	than two havs
Ontion D [.]	No restriction on number of battens
Option D.	
013	Battens should be designed to resist moment equal to
Ontion A^{\cdot}	Vt L n
Option R:	VtL_0/n
Option C:	Vt /L o n
Option D:	$Vt I_0/2n$
Option D.	
014	A beam section is provided on the basis of(i) section modulus (ii) deflection (iii)
Q14.	shear
Ontion A:	· ··· 1 11
Ontion R:	1, 1, 11 11 111
Ontion C.	· · · · · · · · · · · · · · · · · · ·
Option D	i ii and iii
Option D.	

015	As per IS specification, the beam sections should be
Option A [•]	not symmetrical about any principal axes
Option B:	at least symmetrical about one of the principal axes
Option C:	symmetrical about all principal axes
Option D:	unsymmetrical about all principal axes
option D.	
Q16.	The design bending strength of beams when $V \le 0.6Vd$ is given by
Option A:	βb /Zpfy γm0
Option B:	βbZpfy / γm0
Option C:	βbZp /fy γm0
Option D:	βbZpfy γm0
-	
Q17.	The value of βb in the equation of design bending strength for plastic section is
	given by
Option A:	1.5
Option B:	2.0
Option C:	0.5
Option D:	1.0
Q18.	The design bending strength of laterally unsupported beams is governed by
Option A:	torsion
Option B:	bending
Option C:	lateral torsional buckling
Option D:	yield stress
Q19.	The value of design bending compressive stress fbd is
Option A:	X _{LT} fy
Option B:	X _{LT} fy /fy
Option C:	X _{LT} fy x fy
Option D:	X _{LT} /fy
Q20.	The maximum diagonal compression in plate girder simply supported occurs
Option A:	does not occur
Option B:	above neutral axis
Option C:	below neutral axis
Option D:	at neutral axis

	A simply supported welded plate Girder of span 24m is subjected to UDL
	of 50 kN/m over the span excluding self-weight, Design cross section, give
Q2	check for shear buckling and design bending strength, also provide 2-step
20 Marks	curtailment assuming plate girder is laterally supported throughout, and no
	intermediate stiffeners are provided. (No need to design welded
	connections and stiffeners)

Q3.	
(10 Marks Each)	
А	A Column ISHB 300@576.83 N/m strengthened with two cover plates of size 350 x 20mm to carry factored axial load of 2000kN, calculate Size, Thickness and number of bolts required for the Gusset base assuming M20 concrete grade and 24mm bolt diameter, draw diagrams showing all details.
В	A mild steel column, 6m high, has its ends solidly built in. it consists of two channels ISMC300 placed back-to-back with 180mm gap between them. Design the column and suitable battening system .