Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2012 Examination: Third Year Semester V

Course Code: ETC505 and Course Name: Integrated Circuits

Time: 1 hour Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks.

Q1.	Which among the following is ideal for consumer applications?
Option A:	NE5018
Option B:	LM380
Option C:	MC1408
Option D:	SE5018
Q2.	Find the input voltage of an ideal op-amp. It's one of the inputs and output voltages are 2v and 12 V. (Gain=3)
Option A:	8 V
Option B:	4 V
Option C:	-4 V
Option D:	-2 V
Q3.	What happen if any positive input signal is applied to open-loop configuration?
Option A:	Output reaches saturation level
Option B:	Output voltage swing's peak to peak
Option C:	Output will be a sine waveform
Option D:	Output will be a non-sinusoidal waveform
Q4.	The ideal opamp has the following characteristics
Option A:	$R_i = \infty, A = \infty, R_0 = 0$
Option B:	$R_i = 0, A = \infty, R_0 = 0$
Option C:	$R_i = \infty, A = \infty, R_0 = \infty$
Option D:	$R_i = 0, A = \infty, R_0 = \infty$
Q5.	An op-amp has a slew rate of 5 V/ μs . The largest sine wave output voltage
	possible at a frequency of 1 MHz is
Option A:	10 V
Option B:	5 V
Option C:	2.5 V
Option D:	7.5 V
Q6.	Hysteresis is desirable in Schmitt trigger because
Option A:	Energy is to be stored/discharged in parasitic capacitances
Option B:	Effects of temperature would be compensated
Option C:	Devices in the circuit should be allowed time for saturation and desaturation
Option D:	It would prevent noise from causing false triggering
Q7.	Which amplifier provides twice output swing as that of LM380 amplifier?

Option A:	Hybrid power amplifier
Option B:	Bridge power audio amplifier
Option C:	Monolithic power audio amplifier
Option D:	Dual power amplifier
Option D.	Duai power ampimer
00	A contain inventing amplifier has aloged loop voltage gain of 25. The on amp has
Q8.	A certain inverting amplifier has closed loop voltage gain of 25. The op-amp has an open loop voltage gain of 100000. If an op-amp with a open loop voltage gain
	of 200000 is substituted in the arrangement, the closed loop gain
Ontion A:	Doubles
Option A:	
Option B: Option C:	Drops to 12.5 Remains at 25
Option D:	Increases slightly
00	The closed loop veltoes sain of an inventing annulifier is equal to
Q9.	The closed loop voltage gain of an inverting amplifier is equal to Ratio of input resistance to feedback resistance
Option A:	1
Option B:	Open loop voltage gain
Option C:	Feedback resistance divided by input resistance
Option D:	Input resistance
010	The approximate input impodence of the approximation which has D = 10 kg. D
Q10.	The approximate input impedance of the opamp circuit which has $R_i = 10 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$ and $R_i = 10 \text{ k}\Omega$ is
Ontion A	$= 100 \text{ k}\Omega$ and $R_L = 10 \text{ k}\Omega$ is
Option A:	Infinity
Option B:	120 kΩ
Option C:	110 kΩ
Option D:	10 kΩ
Q11.	A LM380 power amplifier is used in a intercom system with amplifier gain = 50
Q11.	and the transformer turns ratio is given as 35. Find the overall gain of the circuit.
Option A:	1880
Option B:	1750
Option C:	1370
	1580
Option D:	1300
Q12.	A certain op-amp has a bias current of 50 μA. The input offset current is
Option A:	700 nA
Option B:	99.3 µA
Option C:	49.7 μA
Option D:	68.2 μA
Option D.	υυ. 2 μπ
Q13.	How many control lines are present in analog to digital converter in addition to
V13.	reference voltage?
Option A:	Three
Option B:	Two
Option C:	One
Option D:	
Орион D.	Four
Q14.	The flash type A/D converters are called as
Option A:	The flash type A/D converters are called as Parallel non-inverting A/D converter
Орион А.	1 aranci non-myering A/D converter

Option B:	Parallel counter A/D converter
Option C:	Parallel inverting A/D converter
Option D:	Parallel comparator A/D converter
1	1
Q15.	A dual slope has the following specifications: 16bit counter; Clock rate =4 MHz;
	Input voltage=12 V; Output voltage =-7 V and Capacitor=0.47μF. If the counters
	have cycled through 2n counts, determine the value of resistor in the integrator.
Option A:	60 kΩ
Option B:	50 k Ω
Option C:	120kΩ
Option D:	100kΩ
•	
Q16.	How many natural states will there be in a 4-bit ripple counter?
Option A:	4
Option B:	8
Option C:	16
Option D:	32
Q17.	A 741 op-amp has a gain bandwidth product of 1 MHz. a non inverting amplifier
	using this op-amp and having a voltage gain of 20 dB will exhibit -3 dB
	bandwidth of
Option A:	50KHz
Option B:	100KHz
Option C:	200KHz
Option D:	5KHz
Q18.	Hysteresis is desirable in Schmitt trigger because
Option A:	Energy is to be stored/discharged in parasitic capacitances
Option B:	Effects of temperature would be compensated
Option C:	Devices in the circuit should be allowed time for saturation and desaturation
Option D:	It would prevent noise from causing false triggering
Q19.	One of the major drawbacks to the use of asynchronous counters is that
Option A:	Low-frequency applications are limited because of internal propagation delays
Option B:	High-frequency applications are limited because of internal propagation delays
Option C:	Asynchronous counters do not have major drawbacks and are suitable for use in
	high
Option D:	Asynchronous counters do not have propagation delays, which limits their use in
	high
Q20.	Determine the time period of a monostable 555 multivibrator.
Option A:	T = 0.33RC
Option B:	T = 1.1RC
Option C:	T = 3RC
Option D:	T = RC
Q21.	A monostable multivibrator has $R = 120k\Omega$ and the time delay $T = 1000ms$,
	calculate the value of C?

Option A:	$0.9\mu F$
Option B:	1.32μF
Option C:	7.5µF
Option D:	2.49µF
Q22.	How can a monostable multivibrator be modified into a linear ramp generator?
Option A:	Connect a constant current source to trigger input
Option B:	Connect a constant current source to trigger output
Option C:	Replace resistor by constant current source
Option D:	Replace capacitor by constant current source
Q23.	How to achieve 50% duty cycle in adjustable rectangular wave generator?
	(Assume R1 – Resistor connected between supply and discharge and R2 –
	Resistor connected between discharge and trigger input.)
Option A:	R1 < R2
Option B:	R1 > R2
Option C:	R1 = R2
Option D:	$R1 \ge R2$
Q24.	What is the function of low pass filter in phase-locked loop?
Option A:	Improves low frequency noise
Option B:	Removes high frequency noise
Option C:	Tracks the voltage changes
Option D:	Changes the input frequency
Q25.	If $ADM = 3500$ and $ACM = 0.35$, The CMRR is
Option A:	1225
Option B:	10000
Option C:	80 dB
Option D:	Both 1 and 3