Program: Electronics & Telecommunication Engineering Curriculum Scheme: Rev2012 Examination: Third Year Semester IV

Course Code: _ETC404____ and Course Name: Wave Theory and Propagation e: 1 hour Max. Marks: 50

Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Two charges of 1 C are placed in air such that the distance between them is
	$\sqrt{9 \times 10^9}$. Determine the magnitude of force exerted on each of them
Option A:	2 N
Option B:	1 N
Option C:	0.5 N
Option D:	4 N
Q2.	The relation between electric field and potential is given by (bold letters indicate
	vectors)
Option A:	$E = \nabla V$
Option B:	$E = -\nabla V$
Option C:	$E = -\nabla \times V$
Option D:	$E = \nabla \times V$
Q3.	A Gaussian sphere has two charges Q_1 and $-Q_2$ inside it while another two
	charges Q_3 and Q_4 are outside the sphere. Determine the total electric flux density
	inside the sphere
Option A:	$Q_1 + Q_2 + Q_3 + Q_4$
Option B:	$Q_1 + Q_2$
Option C:	$Q_1 - Q_2$
Option D:	$Q_1 - Q_2 - Q_3 - Q_4$
Q4.	An infinite sheet charge has a charge density of $8.85 \times 10^{-12} \frac{c}{m^2}$. Determine the
	magnitude of electric field at a distance of 1 m above the sheet charge.
Option A:	0.5 V/m
Option B:	2 V/m
Option C:	1 V/m
Option D:	5 V/m
Q5.	Choose the best definition of a dipole.
Option A:	A pair of equal and like charges located at the origin
Option B:	A pair of unequal and like charges located at the origin
Option C:	A pair of equal and unlike charges separated by a small distance
Option D:	A pair of unequal and unlike charges separated by a small distance
Q6.	Calculate the charge density when a potential function $x^2 + y^2 + z^2$ is in air (in
	nC/m ³)
Option A:	1/6π
Option B:	6/2π

	12/01
Option D:	$10/8\pi$
Q7.	The unit of $\nabla \times H$ is
Option A:	Ampere
Option B:	Ampere/meter
Option C:	Ampere/meter ²
Option D:	Ampere-meter
Q8.	If the tangential component of electric field in medium 1 is 2 V/m, what will be
	the tangential component of electric field in medium 2? (Assume both the
	mediums are dielectrics)
Option A:	2 V/m
Option B:	1 V/m
Option C:	-2 V/m
Option D:	0 V/m
Q9.	The skin depth in a poor conductor is independent of
Option A:	permittivity
Option B:	permeability
Option C:	frequency
Option D:	None of these
Option D:	None of these
Option D: Q10.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity
Option D: Q10.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing
Option D: Q10.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2?
Option D: Q10. Option A:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W
Option D: Q10. Option A: Option B:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W
Option D: Q10. Option A: Option B: Option C:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW
Option D: Q10. Option A: Option B: Option C: Option D:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW
Option D: Q10. Option A: Option B: Option C: Option D:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW
Option D: Q10. Option A: Option B: Option C: Option D: Q11.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations?
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option B: Option C: Option D:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option C: Option D:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Option D: Q12.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option C: Option D: Q12.	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors)
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option A: Option C: Option C: Option D: Q12. Option A:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors) $\nabla \cdot B = 0$
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option A: Option C: Option D: Q12. Option A: Option A:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors) $\nabla \cdot B = 0$ $\nabla \cdot D = \rho_v$
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12. Option A: Option B: Option A: Option S: Option C:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors) $\nabla \cdot B = 0$ $\nabla \times H = J + \frac{\partial D}{\partial t}$
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option A: Option C: Option D: Q12. Option A: Option B: Option B: Option C: Option C: Option C:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors) $\nabla \cdot B = 0$ $\nabla \times H = J + \frac{\partial D}{\partial t}$ $\nabla \times E = B$
Option D: Q10. Option A: Option B: Option C: Option D: Q11. Option A: Option A: Option C: Option D: Q12. Option A: Option A: Option S: Option C: Option C: Option C:	None of these An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? 0.53 W 1.88 W 18.8 mW 53.31 mW Which of the following statements is an implication of Maxwell's equations? Interdependence of electric and magnetic fields Finite speed of propagation of an electromagnetic wave Light itself is an electromagnetic wave All of the above Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors) $\nabla \cdot B = 0$ $\nabla \cdot B = 0$ $\nabla \times H = J + \frac{\partial D}{\partial t}$ $\nabla \times E = B$

	reflected with a VSWR of 3. What is the percentage of incident power that is
	reflected?
Option A:	10 %
Option B:	25 %
Option C:	50 %
Option D:	75 %
Q14.	Name the physical quantity which has the unit C/m ²
Option A:	Electric Field
Option B:	Magnetic Field
Option C:	Magnetic Flux
Option D:	Electric Flux Density
Q15.	A uniform plane wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
Option A:	10 %
Option B:	25 %
Option C:	50 %
Option D:	75 %
Q16.	The static form of continuity equation proves the
Option A:	Kirchoff's Current Law
Option B:	Kirchoff's Voltage Law
Option C:	Both
Option D:	None of the above
Q17.	Magnetic field intensity = $3a_x + 7ya_y + 2xa_z A/m$. What is the current density J
Option A:	$-2 a_{\nu}$
Option B:	$-7 a_{z}$
Option C:	$3 a_r$
Option D:	$12 a_{y}$
Q18.	Which of the following is not a correct statement regarding boundary condition for a dielectric-dielectric interface?
Option A:	Tangential component of electric field is always continuous at the boundary
Option B:	Normal component of magnetic flux density is always continuous at the boundary
Option C:	Tangential component of magnetic field is continuous at the boundary in the absence of current density
Option D:	Normal component of electric flux density is always continuous at the boundary
Q19.	If the volume charge density is $8.85 \times 10^{-12} C/m^3$, the right-hand side of Poisson's equation will be (Assume permittivity of free space as 1)
Option A:	1
Option B:	-1

Option C:	2
Option D:	-2
Q20.	Which of the following is a co-ordinate system?
Option A:	Cartesian
Option B:	Cylindrical
Option C:	Spherical
Option D:	All of the above
Q21.	In general, the earth will act as a
Option A:	leaky resistor
Option B:	leaky inductor
Option C:	leaky capacitor
Option D:	leaky transistor
Q22.	Maximum usable frequency of an ionospheric layer at 60 degrees incidence and 8
	MHz critical frequency is
Option A:	9.24 MHz
Option B:	16 MHz
Option C:	8 MHz
Option D:	6.93 MHz
Q23.	Which of the following are types of radio wave propagation?
Option A:	Space Wave Propagation
Option B:	Ground Wave Propagation
Option C:	Surface Wave Propagation
Option D:	All of the above
Q24.	The upper part of the atmosphere where the ionisation is appreciable is known as
Option A:	Stratosphere
Option B:	Ionosphere
Option C:	Troposphere
Option D:	Mesosphere
Q25.	F ₂ layer of Appleton region acts as a significant reflecting medium for
	frequency radio waves
Option A:	Moderate
Option B:	High
Option C:	low
Option D:	Ultra high