University of Mumbai

Examination 2020

Program: Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester III
Course Code: _ECC304 \qquad and Course Name: Circuit Theory and Networks
Time: 1 hour
Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The network having admittance function $\mathrm{Y}(\mathrm{s})=\left(4 \mathrm{~s}^{\wedge} 2+6 \mathrm{~s}\right) /(\mathrm{s}+1)$
Option A:	RC function
Option B:	LC function
Option C:	RLC function
Option D:	None of the above
Q2.	In the given network, the switch is closed at $t=0$. With zero current in the inductor, find i at $\mathrm{t}=0^{+}$
Option A:	0 A
Option B:	1 A
Option C:	2 A
Option D:	3 A
Q3.	In the network, the switch is moved from position 1 to position 2 at $\mathrm{t}=0$, steady state condition having been established in the position 1 . Determine $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.
Option A:	10^^(-2t) A
Option B:	$10 e^{\wedge}(2 \mathrm{t}) \mathrm{A}$
Option C:	$20{ }^{\wedge}(-2 \mathrm{t}) \mathrm{A}$
Option D:	$20 e^{\wedge}(2 \mathrm{t}) \mathrm{A}$
Q4.	In the network, the switch is moved from a to b at $\mathrm{t}=0$. Determine $\mathrm{i}(\mathrm{t})$

University of Mumbai

Examination 2020

Option A:	$10 \mathrm{e}^{\wedge}(-0.5 \mathrm{t}) \mathrm{A}$
Option B:	$10 \mathrm{e}^{\wedge}(-0.5) \mathrm{A}$
Option C:	$10 \mathrm{e}^{\wedge}(0.5 \mathrm{t}) \mathrm{A}$
Option D:	$10 \mathrm{e}^{\wedge}(0.5) \mathrm{A}$
Q5.	The switch is opened at time $\mathrm{t}=0$. Determine $\mathrm{v}(\mathrm{t})$ for $\mathrm{t}>0$.
Option A:	$4 \mathrm{t}^{*} \mathrm{e}^{\wedge}(-2 \mathrm{t}) \mathrm{A}$
Option B:	$4 t^{*} \mathrm{e}^{\wedge}(2 \mathrm{t}) \mathrm{A}$
Option C:	$2 t^{*} \mathrm{e}^{\wedge}(-2 \mathrm{t}) \mathrm{A}$
Option D:	$4 t^{*} \mathrm{e}^{\wedge}(-2 \mathrm{t}) \mathrm{V}$
Q6.	Determine the driving point impedance of the network shown in figure
Option A:	$8 s^{3}+4 s$
Option B:	$16 s^{4}+12 s^{2}+1$
Option C:	$\frac{16 s^{4}+12 s^{2}+1}{8 s^{3}+4 s}$

University of Mumbai

Examination 2020

Option D:	None of the above
Q7.	What is the value of V_{1} in the network given here?
Option A:	$5 \mathrm{I}_{1}$
Option B:	$-5 \mathrm{I}_{1}$
Option C:	$2 \mathrm{I}_{2}$
Option D:	$-2 \mathrm{I}_{2}$
Q8.	Find the current I 1 in the network shown
Option A:	1.364 A
Option B:	2.878 A
Option C:	-1.364 A
Option D:	-2.878 A
Q9.	Find the current I2 in the network shown
Option A:	1.364 A
Option B:	2.878 A
Option C:	-1.364 A
Option D:	-2.878 A

University of Mumbai

Examination 2020

Q10.

University of Mumbai

Examination 2020

Q13.	When using Superposition theorem in the network given here, what will be the current through 6 ohms when only 15 V source is acting? (assuming current is in clockwise direction)
Option A:	0.3 A
Option B:	0.34 A
Option C:	0.39 A
Option D:	None of the above
Q14.	When using Superposition theorem in the network given here, what will be the current through 6 ohms when only 10 V source is acting? (assuming current is in clockwise direction)
Option A:	0.2 A
Option B:	0.26 A
Option C:	0.29 A
Option D:	None of the above
Q15.	When using Superposition theorem in the network given here, what will be the current through 6 ohms? (assuming current is in clockwise direction)
Option A:	1 A
Option B:	0.74 A
Option C:	0.65 A
Option D:	None of the above

University of Mumbai

Examination 2020

Q16.	If the load resistor is 16 ohms, what is the Thevenin's equivalent voltage?
Option A:	10 V
Option B:	20 V
Option C:	30 V
Option D:	None of these
Q17.	If the load resistor is 16 ohms, what is the Thevenin's equivalent resistance?
Option A:	6 ohms
Option B:	12 ohms
Option C:	18 ohms
Option D:	24 ohms
Q18.	Determine the current in the 16 ohms resistor for the network given?
Option A:	0.2 A
Option B:	1 A
Option C:	2 A
Option D:	-2 A
Q19.	When the voltages and currents are to be found out from a given network, this is called as
Option A:	Network Synthesis
Option B:	Network Analysis

University of Mumbai

Examination 2020

Option C:	Both of the above
Option D:	None of the above
Q20.	In maximum power transfer theorem,
Option A:	RTH = RL
Option B:	$\mathrm{VTH}=\mathrm{VL}$
Option C:	$\mathrm{ITH}=\mathrm{IL}$
Option D:	None of the above
Q21.	The voltage V in the figure is equal to
Option A:	10 V
Option B:	15 V
Option C:	5 V
Option D:	None of these
Q22.	Laplace transform changes the ____ domain function to the _____ domain function.
Option A:	time, time
Option B:	time, frequency
Option C:	frequency, time
Option D:	frequency, frequency
Q23.	The resistance element \qquad while going from the time domain to frequency domain.
Option A:	does not change
Option B:	increases
Option C:	decreases
Option D:	increases exponentially
Q24.	The current in the $\mathrm{R}-\mathrm{L}$ circuit at a time $\mathrm{t}=0+\mathrm{is}$?
Option A:	V/R
Option B:	R/V
Option C:	V
Option D:	R
Q25.	Find Z_{11} for the following network

University of Mumbai
Examination 2020

