University of Mumbai

Examination 2020

Program: Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: _ECC503___ and Course Name: Electromagnetic Engineering
Time: 1 hour
Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Two charges of 1 C are placed in air such that the distance between them is $\sqrt{\left\{9 * 10^{9}\right\}}$. Determine the magnitude of force exerted on each of them
Option A:	2 N
Option B:	1 N
Option C:	0.5 N
Option D:	4 N
Q2.	The relation between electric field and potential is given by (bold letters indicate vectors)
Option A:	$\boldsymbol{E}=\boldsymbol{\nabla} \boldsymbol{V}$
Option B:	$E=-\nabla V$
Option C:	$E=-\boldsymbol{\nabla} \times \boldsymbol{V}$
Option D:	$E=\nabla \times V$
Q3.	A Gaussian sphere has two charges Q_{1} and $-\mathrm{Q}_{2}$ inside it while another two charges Q_{3} and Q_{4} are outside the sphere. Determine the total electric flux density inside the sphere
Option A:	$\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}$
Option B:	$\mathrm{Q}_{1}+\mathrm{Q}_{2}$
Option C:	$\mathrm{Q}_{1}-\mathrm{Q}_{2}$
Option D:	$\mathrm{Q}_{1}-\mathrm{Q}_{2}-\mathrm{Q}_{3}-\mathrm{Q}_{4}$
Q4.	An infinite sheet charge has a charge density of $8.85 * 10^{-12} \frac{\mathrm{C}}{\mathrm{m}^{2}}$. Determine the magnitude of electric field at a distance of 1 m above the sheet charge.
Option A:	$0.5 \mathrm{~V} / \mathrm{m}$
Option B:	$2 \mathrm{~V} / \mathrm{m}$
Option C:	$1 \mathrm{~V} / \mathrm{m}$
Option D:	$5 \mathrm{~V} / \mathrm{m}$
Q5.	Choose the best definition of a dipole.
Option A:	A pair of equal and like charges located at the origin
Option B:	A pair of unequal and like charges located at the origin
Option C:	A pair of equal and unlike charges separated by a small distance
Option D:	A pair of unequal and unlike charges separated by a small distance
Q6.	Calculate the charge density when a potential function $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ is in air (in $\mathrm{nC} / \mathrm{m}^{3}$)
Option A:	$1 / 6 \pi$
Option B:	$6 / 2 \pi$

University of Mumbai
Examination 2020

Option C:	12/6 π
Option D:	10/8 π
Q7.	The unit of $\nabla \times H$ is
Option A:	Ampere
Option B:	Ampere/meter
Option C:	Ampere/meter ${ }^{2}$
Option D:	Ampere-meter
Q8.	If the tangential component of electric field in medium 1 is $2 \mathrm{~V} / \mathrm{m}$, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics)
Option A:	$2 \mathrm{~V} / \mathrm{m}$
Option B:	$1 \mathrm{~V} / \mathrm{m}$
Option C:	-2 V/m
Option D:	$0 \mathrm{~V} / \mathrm{m}$
Q9.	The skin depth in a poor conductor is independent of
Option A:	permittivity
Option B:	permeability
Option C:	frequency
Option D:	None of these
Q10.	An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H=0.1 \cos \left(4 * 10^{8} t-2 y\right) a_{x} A / m$. What will be total power passing through a square plate of side 20 cm located in the plane $\mathrm{x}+\mathrm{y}=2$?
Option A:	0.53 W
Option B:	1.88 W
Option C:	18.8 mW
Option D:	53.31 mW
Q11.	Which of the following statements is an implication of Maxwell's equations?
Option A:	Interdependence of electric and magnetic fields
Option B:	Finite speed of propagation of an electromagnetic wave
Option C:	Light itself is an electromagnetic wave
Option D:	All of the above
Q12.	Which of the following is NOT a Maxwell's equation? (Bold letters indicate vectors)
Option A:	$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$
Option B:	$\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{v}$
Option C:	$\nabla \times H=J+\frac{\partial D}{\partial t}$
Option D:	$\nabla \times E=B$
Q13.	A uniform plane wave incident on a plane surface of a dielectric material is

University of Mumbai

Examination 2020

	reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
Option A:	10 \%
Option B:	25 \%
Option C:	50 \%
Option D:	75 \%
Q14.	Name the physical quantity which has the unit $\mathrm{C} / \mathrm{m}^{2}$
Option A:	Electric Field
Option B:	Magnetic Field
Option C:	Magnetic Flux
Option D:	Electric Flux Density
Q15.	A uniform plane wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3 . What is the percentage of incident power that is reflected?
Option A:	10 \%
Option B:	25 \%
Option C:	50 \%
Option D:	75 \%
Q16.	The static form of continuity equation proves the
Option A:	Kirchoff's Current Law
Option B:	Kirchoff's Voltage Law
Option C:	Both
Option D:	None of the above
Q17.	Magnetic field intensity $=3 a_{x}+7 y a_{y}+2 x a_{z} A / m$. What is the current density J
Option A:	$-2 a_{y}$
Option B:	$-7 a_{z}$
Option C:	$3 a_{x}$
Option D:	$12 a_{y}$
Q18.	Which of the following is not a correct statement regarding boundary condition for a dielectric-dielectric interface?
Option A:	Tangential component of electric field is always continuous at the boundary
Option B:	Normal component of magnetic flux density is always continuous at the boundary
Option C:	Tangential component of magnetic field is continuous at the boundary in the absence of current density
Option D:	Normal component of electric flux density is always continuous at the boundary
Q19.	If the volume charge density is $8.85 \times 10^{-12} \mathrm{C} / \mathrm{m}^{3}$, the right-hand side of Poisson's equation will be (Assume permittivity of free space as 1)
Option A:	1
Option B:	-1

University of Mumbai
Examination 2020

Option C:	2
Option D:	-2
Q20.	Which of the following is a co-ordinate system?
Option A:	Cartesian
Option B:	Cylindrical
Option C:	Spherical
Option D:	All of the above
Q21.	Which of the following are the primary constants of a transmission line?
Option A:	$\mathrm{R}, \mathrm{L}, \mathrm{G}, \mathrm{C}$
Option B:	γ, Z_{0}
Option C:	$\gamma, V S W R$
Option D:	R and L
Q22.	Impedance matching is achieved when
Option A:	The load impedance is equal to the source impedance
Option B:	The load impedance is equal to the characteristic impedance
Option C:	The load impedance is equal to the input impedance
Option D:	The source impedance is equal to the characteristic impedance
Q23.	Which of the following is an example of a transmission line?
Option A:	Coaxial cable
Option B:	Twisted pair cable
Option C:	Optical fiber cable
Option D:	All of the above
Q24.	If a normal Smith chart is rotated by 180 degrees, we get
Option A:	ZY Smith chart
Option B:	Impedance Smith chart
Option C:	Admittance Smith chart
Option D:	Black Magic Design
Q25.	A transmission line has $\mathrm{R}=0.1$ ohms $/ \mathrm{m}, \mathrm{G}=0.01 ~ m h o / m, ~$ L $=0.01 ~$ $\mathrm{HH} / \mathrm{m}, \mathrm{C}=$
Option A:	$100 \mathrm{pF} / \mathrm{m}$. Find the characteristic impedance of the line at 2 GHz
Option B:	$100+\mathrm{j} 0.716$ ohms
Option C:	$10+\mathrm{j} 0.0358$ ohms $/ \mathrm{m}$
Option D:	$10+\mathrm{j} 0.0358$ ohms $/ \mathrm{m}$

