Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: _ECC503____ and Course Name: Electromagnetic Engineering

Time: 1 hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Two charges of 1 C are placed in air such that the distance between them is
QI.	
Oution A.	$\sqrt{9*10^9}$. Determine the magnitude of force exerted on each of them
Option A:	2 N
Option B:	1 N
Option C:	0.5 N
Option D:	4 N
Q2.	The relation between electric field and potential is given by (bold letters indicate
Ontion A	vectors) $ E = \nabla V $
Option A:	$E = \nabla V$ $E = -\nabla V$
Option B:	$E = -\nabla V$ $E = -\nabla \times V$
Option C:	
Option D:	$E = \nabla \times V$
02	A Causaian anhana has two shances O and O inside it while another two
Q3.	A Gaussian sphere has two charges Q_1 and $-Q_2$ inside it while another two charges Q_3 and Q_4 are outside the sphere. Determine the total electric flux density
	inside the sphere
Option A:	$Q_1 + Q_2 + Q_3 + Q_4$
Option B:	$Q_1 + Q_2$
Option C:	$Q_1 - Q_2$
Option D:	$Q_1 - Q_2 - Q_3 - Q_4$
Option 5.	\(\frac{1}{2}\)\(\frac{2}{3}\)\(\frac{4}{4}\)
Q4.	An infinite sheet shows has a showed density of 0.05 + 10 ⁻¹² C. Determine the
ζ	An infinite sheet charge has a charge density of $8.85 * 10^{-12} \frac{c}{m^2}$. Determine the
0	magnitude of electric field at a distance of 1 m above the sheet charge.
Option A:	0.5 V/m
Option B:	2 V/m
Option C:	1 V/m
Option D:	5 V/m
_	
Q5.	Choose the best definition of a dipole.
Option A:	A pair of equal and like charges located at the origin
Option B:	A pair of unequal and like charges located at the origin
Option C:	A pair of equal and unlike charges separated by a small distance
Option D:	A pair of unequal and unlike charges separated by a small distance
Q6.	Calculate the charge density when a potential function $x^2 + y^2 + z^2$ is in air (in
	nC/m^3)
Option A:	$1/6\pi$
Option B:	$6/2\pi$

Option D: 10/8π Q7. The unit of ∇ × H is Option A: Ampere Option B: Ampere/meter Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permetbility Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t − 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		Examination 2020
Q7. The unit of ∇ × H is Option A: Ampere Option B: Ampere/meter Option C: Ampere/meter² Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t - 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option C: 18.8 mW Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option C:	$12/6\pi$
Option A: Ampere Option B: Ampere/meter Option C: Ampere/meter Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option C: 18.8 mW Option C: 18.8 mW Option C: 18.8 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option D:	$10/8\pi$
Option A: Ampere Option B: Ampere/meter Option C: Ampere/meter Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option C: 18.8 mW Option C: 18.8 mW Option C: 18.8 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		
Option B: Ampere/meter Option C: Ampere/meter² Option D: Ampere-meter Q8.	Q7.	The unit of $\nabla \times H$ is
Option C: Ampere/meter² Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t - 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option A:	Ampere
Option D: Ampere-meter Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t - 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option B:	Ampere/meter
Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t - 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option C:	Ampere/meter ²
Q8. If the tangential component of electric field in medium 1 is 2 V/m, what will be the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to H = 0.1 cos(4 * 10 ⁸ t - 2y)a _x A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option D:	Ampere-meter
the tangential component of electric field in medium 2? (Assume both the mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	
mediums are dielectrics) Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8 t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Q8.	If the tangential component of electric field in medium 1 is 2 V/m, what will be
Option A: 2 V/m Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		the tangential component of electric field in medium 2? (Assume both the
Option B: 1 V/m Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x \text{ A/m}$. What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		mediums are dielectrics)
Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8 t - 2y) a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option A:	2 V/m
Option C: -2 V/m Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8 t - 2y)a_x A/m$. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option B:	1 V/m
Option D: 0 V/m Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		
Q9. The skin depth in a poor conductor is independent of Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	
Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		·
Option A: permittivity Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Q9.	The skin depth in a poor conductor is independent of
Option B: permeability Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		
Option C: frequency Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m . What will be total power passing through a square plate of side 20 cm located in the plane $x+y=2$? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	
Option D: None of these Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	<u> </u>	
Q10. An electromagnetic wave propagating in free space has a magnetic field intensit equal to $H = 0.1 \cos(4*10^8t - 2y)a_x$ A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	
equal to $H = 0.1 \cos(4 * 10^8 t - 2y) a_x$ A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2? Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields		
Option A: 0.53 W Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Q10.	An electromagnetic wave propagating in free space has a magnetic field intensity equal to $H = 0.1 \cos(4 * 10^8 t - 2y)a_x$ A/m. What will be total power passing through a square plate of side 20 cm located in the plane x+y=2?
Option B: 1.88 W Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	Option A:	
Option C: 18.8 mW Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	1.88 W
Option D: 53.31 mW Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	18.8 mW
Q11. Which of the following statements is an implication of Maxwell's equations? Option A: Interdependence of electric and magnetic fields	•	53.31 mW
Option A: Interdependence of electric and magnetic fields	•	
	Q11.	Which of the following statements is an implication of Maxwell's equations?
Ontion B: Finite speed of propagation of an electromagnetic ways	Option A:	Interdependence of electric and magnetic fields
Option 5. Finite speed of propagation of an electromagnetic wave	Option B:	Finite speed of propagation of an electromagnetic wave
Option C: Light itself is an electromagnetic wave	Option C:	Light itself is an electromagnetic wave
Option D: All of the above	Option D:	All of the above
Q12. Which of the following is NOT a Maxwell's equation? (Bold letters indicate	Q12.	Which of the following is NOT a Maxwell's equation? (Bold letters indicate
vectors)		vectors)
Option A: $\nabla \cdot \mathbf{B} = 0$	Option A:	$\nabla \cdot \mathbf{B} = 0$
Option B: $\nabla \cdot \mathbf{D} = \rho_v$	Option B:	$\nabla \cdot \mathbf{D} = \rho_{v}$
Option C: $\nabla \times H = J + \frac{\partial D}{\partial t}$		$\nabla \times H = J + \frac{\partial D}{\partial t}$
Option D: $\nabla \times E = B$	Option D:	$\nabla \times E = B$
Q13. A uniform plane wave incident on a plane surface of a dielectric material is	Q13.	A uniform plane wave incident on a plane surface of a dielectric material is

	reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
Option A:	10 %
Option B:	25 %
Option C:	50 %
•	
Option D:	75 %
044	Name the plant of the chief to the chief the chief C/m²
Q14.	Name the physical quantity which has the unit C/m ² Electric Field
Option A:	
Option B:	Magnetic Field
Option C:	Magnetic Flux
Option D:	Electric Flux Density
Q15.	A uniform plane wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
Option A:	10 %
Option B:	25 %
Option C:	50 %
Option D:	75 %
•	
Q16.	The static form of continuity equation proves the
Option A:	Kirchoff's Current Law
Option B:	Kirchoff's Voltage Law
Option C:	Both
Option D:	None of the above
Q17.	Magnetic field intensity = $3 a_x + 7ya_y + 2xa_z A/m$. What is the current density J
Option A:	$-2 a_y$
Option B:	$-7 a_z$
Option C:	$3 a_x$
Option D:	$12 a_{\rm v}$
Q18.	Which of the following is not a correct statement regarding boundary condition for a dielectric-dielectric interface?
Option A:	Tangential component of electric field is always continuous at the boundary
Option B:	Normal component of magnetic flux density is always continuous at the boundary
Option C:	Tangential component of magnetic field is continuous at the boundary in the absence of current density
Option D:	Normal component of electric flux density is always continuous at the boundary
Q19.	If the volume charge density is $8.85 \times 10^{-12} C/m^3$, the right-hand side of Poisson's equation will be (Assume permittivity of free space as 1)
Option A:	1
Option B:	-1

Option C:	2
Option D:	-2
Q20.	Which of the following is a co-ordinate system?
Option A:	Cartesian
Option B:	Cylindrical
Option C:	Spherical
Option D:	All of the above
Q21.	Which of the following are the primary constants of a transmission line?
Option A:	R, L, G, C
Option B:	γ, Z_0
Option C:	$\gamma, VSWR$
Option D:	R and L
Q22.	Impedance matching is achieved when
Option A:	The load impedance is equal to the source impedance
Option B:	The load impedance is equal to the characteristic impedance
Option C:	The load impedance is equal to the input impedance
Option D:	The source impedance is equal to the characteristic impedance
Q23.	Which of the following is an example of a transmission line?
Option A:	Coaxial cable
Option B:	Twisted pair cable
Option C:	Optical fiber cable
Option D:	All of the above
Q24.	If a normal Smith chart is rotated by 180 degrees, we get
Option A:	ZY Smith chart
Option B:	Impedance Smith chart
Option C:	Admittance Smith chart
Option D:	Black Magic Design
Q25.	A transmission line has R = 0.1 ohms/m, G = 0.01 mho/m, L = 0.01 μ H/m, C =
	100 pF/m. Find the characteristic impedance of the line at 2 GHz
Option A:	100+j0.716 ohms
Option B:	100+j0.716 ohms/m
Option C:	10+j0.0358 ohms
Option D:	10+j0.0358 ohms/m