Program: COMPUTER Engineering

Curriculum Scheme: Rev2016/2012

Examination: Second Year Semester III

Course Code: E401 and Course Name: DSGT

Time: 1 hour Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Let a set $S = \{2, 4, 8, 16, 32\}$ and \leq be the partial order defined by $S \leq R$ if a
Q1.	divides b. Number of edges in the Hasse diagram of is
Option A:	6
Option B:	5
Option C:	9
Option D:	4
opnon B.	
Q2.	A function defined by $f(x)=2x$ such that $f(x+y)=2x+y$ under the group of real
ν	numbers, then
Option A:	Isomorphism exists
Option B:	Heteromorphic exists
Option C:	Association exists
Option D:	None of the above
Q3.	If $x * y = x + y + xy$ then $(G, *)$ is
Option A:	Monoid
Option B:	Abelian group
Option C:	Commutative semigroup
Option D:	Cyclic group
•	
Q4.	If each and every vertex in G has degree at most 23 then G can have a vertex
	coloring of
Option A:	24
Option B:	23
Option C:	176
Option D:	54
Q5.	The number of edges in a regular graph of degree 46 and 8 vertices is
Option A:	347
Option B:	230
Option C:	184
Option D:	186
Q6.	A function is defined by $f(x)=2x$ and $f(x + y) = f(x) + f(y)$ is called
Option A:	isomorphic
Option B:	homomorphic
Option C:	cyclic group

	Examination 2020
Option D:	heteromorphic
07	Every Isomorphia graph must have representation
Q7. Option A:	Every Isomorphic graph must have representation.
Option B:	
	adjacency list
Option C:	tree
Option D:	adjacency matrix
Q8.	Every poset that is a complete semilattice must always be a
Option A:	sublattice
Option B:	complete lattice
Option C:	free lattice
Option D:	partial lattice
Q9.	In a group there must be only element.
Option A:	1
Option B:	2
Option C:	4
Option D:	5
Q10.	If the sum of elements in each row of an n×n matrix Z is zero, then the matrix is
Option A:	inverse
Option B:	non-singular
Option C:	additive inverse
Option D:	singular
Q11.	The graph representing universal relation is called
Option A:	complete digraph
Option B:	partial digraph
Option C:	empty graph
Option D:	partial subgraph
012	Decree of a real reside 12 const
Q12.	Degree of a graph with 12 vertices is
Option A:	24
-	
_	
Option D:	04
Q13.	An undirected graph has 8 vertices labelled 1, 2,,8 and 31 edges. Vertices 1, 3, 5, 7 have degree 8 and vertices 2, 4, 6, 8 have degree 7. What is the degree of vertex 8?
Option A:	8
Option B:	5
Option C:	15
Option D:	23
-	
Q14.	Determine the number of integers between 1 to 250 that are divisible by 2 or 3 or
Option A: Option B: Option C: Option D:	5, 7 have degree 8 and vertices 2, 4, 6, 8 have degree 7. What is the degree 6 vertex 8? 8 5 15 23

	Examination 2020
	5 or 7.
Option A:	191
Option B:	192
Option C:	193
Option D:	190
Q15.	Let R be a Relation on Z Which is defined by as x R y, iff 2x+3y, is divisible by
	5 is an equivalence relation
Option A:	Yes
Option B:	No
Option C:	Only Transitive
Option D:	Only Symmetric
-	
Q16.	What is Circular Relation
Option A:	a R b and b R a
Option B:	a R b , b R c and c R a
Option C:	a R b , b R c and a R c
Option D:	None of the above
1	
Q17.	Which Statement is True for Injective
Option A:	f(x1)=f(x2)
Option B:	f(x1)>f(x2)
Option C:	f(x2)>f(x1)
Option D:	None of the above
Q18.	Which One is true For Pigeonhole Principle
Option A:	m <n< td=""></n<>
Option B:	m>n
Option C:	n=m
Option D:	None of the above
Q19.	In Partial Order Relation Which One is True
Option A:	Reflexive, Symmetric and Transitive
Option B:	Reflexive Symmetric Only
Option C:	Reflexive, Anti-Symmetric and Transitive
Option D:	None of the above
Truck D.	
Q20.	Let $(A7, \otimes 7) = (\{1, 2, 3, 4, 5, 6\}, \otimes 7)$ is a group. It has two sub groups X and Y.
	$X=\{1,3,6\}, Y=\{2,3,5\}.$ What is the order of union of subgroups?
Option A:	65
Option B:	5
Option C:	32
Option D:	18
орион Б.	
Q21.	.If (M, *) is a cyclic group of order 73, then number of generator of G is equal to
Option A:	89
Option B:	23
opnon b.	

Option C: 72 Option D: 17 Q22. The set of even natural numbers, {6, 8, 10, 12,} is closed under addition operation. Which of the following properties will it satisfy? Option A: closure property Option B: associative property Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option C: Planar graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges Option C: a line graph with one or more vertices		
Q22. The set of even natural numbers, {6, 8, 10, 12,} is closed under addition operation. Which of the following properties will it satisfy? Option A: closure property Option B: associative property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option C: Planar graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges	Option C:	72
operation. Which of the following properties will it satisfy? Option A: closure property Option B: associative property Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges	Option D:	17
operation. Which of the following properties will it satisfy? Option A: closure property Option B: associative property Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges		
Option A: closure property Option B: associative property Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option C: Planar graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option C: a walk with repeated edges	Q22.	The set of even natural numbers, {6, 8, 10, 12,} is closed under addition
Option B: associative property Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option C: a walk with repeated edges		operation. Which of the following properties will it satisfy?
Option C: symmetric property Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges	Option A:	closure property
Option D: identity property Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges Option C: a walk with repeated edges	Option B:	associative property
Q23. Every cyclic group is a/an Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Option C:	symmetric property
Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Option D:	identity property
Option A: infinite subgroup Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option B: abelian group Option C: monoid Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option C: monoid Option D: commutative semigroup Q24.		
Option D: commutative semigroup Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Option B:	
Q24. A in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		monoid
vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Option D:	commutative semigroup
vertex) of G exactly once. Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option A: Euler path Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Q24.	
Option B: Hamiltonian path Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option C: Planar graph Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	_	1
Option D: Path complement graph Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		*
Q25. A trail in a graph can be described as Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges	Option D:	Path complement graph
Option A: a walk without repeated edges Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option B: a cycle with repeated edges Option C: a walk with repeated edges		
Option C: a walk with repeated edges		
	_	i c
Option D: a line graph with one or more vertices	_	
	Option D:	a line graph with one or more vertices