Program: Civil Engineering Curriculum Scheme: Rev2016 Examination: Third Semester III

Course Code: CE-C-305 and Course Name: Fluid Mechanic-I

Time: 1-hour Max. Marks: 50

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	Density of water Kg/m³
Option A:	1500
Option B:	1000
Option C:	2000
Option D:	3000
1	
Q2.	1 poise NS/m ²
Option A:	1/10
Option B:	1/100
Option C:	1/1000
Option D:	1/10000
Q3.	A real fluid, in which the shear stress is directly proportional to the rate of shear
	strain or velocity gradient is known as fluid
Option A:	Ideal plastic
Option B:	Non-Newtonian
Option C:	Newtonian
Option D:	Compressible
Q4.	1 atmospheric pressurem of water.
Option A:	14.328
Option B:	16.328
Option C:	15.328
Option D:	10.328
Q5.	The pressure intensity at a point in a fluid is given by 3.924N/cm ² . find the
	corresponding height of water at that point
Option A:	8m
Option B:	4m
Option C:	6m
Option D:	3m
06	
Q6.	A rectangular plane surface is 2m wide and 3 m deep. It lies in vertical plane in
	water. Determine the total force on the plane surface when its upper edge is horizontal Coincides with water surface.
Ontion A:	78290N
Option A: Option B:	88290N
Option C:	68290N
Option C:	58290N
Option D.	J0Z7UIN

Option A: Option B: Option C: Option A: Option A: Option A: Option D: Momentum Q8. A circular plate of diameter 1.5 m which is placed vertically in water in such a way that the center of the plate is 3m below the free surface of water. Find the position of centre of pressure. Option A: Option A: Option A: Option A: Option A: Option C: Option C: Option C: Option C: Option D: If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option B: Option B: Option C: Option C: Option C: Option C: Option D: Incompressible Option D: Incompressible Option C: Option A: Laminar Option C:	Q7.	When a body is immersed in a fluid an upward force is exerted by the fluid on the
Option A: Option D: Option	Q7.	1
Option A: Pascal Option B: Archimedes Option C: Continuity Option D: Momentum Q8.		
Option B: Archimedes Option C: Continuity Option D: Momentum Q8.	Ontion A:	
Option C: Continuity Option D: Momentum Q8.		
Option D: A circular plate of diameter 1.5 m which is placed vertically in water in such a way that the center of the plate is 3m below the free surface of water. Find the position of centre of pressure. Option A: Option B: Option C: Option D: Option D: If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option B: Option D: Option D: Incompressible Option D: If the Reynolds number is less than 2000 the flow is called Option A: Option A: I aminar Option A: Dytion B: Option D: Neither A Nor B Option D: Neither A Nor B Option A: Non-Uniform Flow Option B: Uniform Flow Option C: Option C: Option C: Option C: Option A: Non-Uniform Flow Option B: Option C: Option C: Option C: Option C: Option C: Option A: Option A: Non-Uniform Flow Option B: Option C: Opt		
Q8. A circular plate of diameter 1.5 m which is placed vertically in water in such a way that the center of the plate is 3m below the free surface of water. Find the position of centre of pressure. Option A: 3.0468m Option D: 7.0468m Option D: 7.0468m Q9. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option B: Unsteady Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11. is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option B: 0.3926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
way that the center of the plate is 3m below the free surface of water. Find the position of centre of pressure. Option A: 3.0468m Option D: 5.0468m Option D: 7.0468m Q9. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option B: Unsteady Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option B: Turbulent Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	Орион D.	Momentum
way that the center of the plate is 3m below the free surface of water. Find the position of centre of pressure. Option A: 3.0468m Option D: 5.0468m Option D: 7.0468m Q9. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option B: Unsteady Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option B: Turbulent Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	08	A circular plate of diameter 1.5 m which is placed vertically in water in such a
Option A: 3.0468m Option D: 4.0468m Option D: 7.0468m Option D: 7.0468m Option A: Option A: Steady Option B: Unsteady Option D: Incompressible Option D: If the Reynolds number is less than 2000 the flow is called Option A: Campinar Option B: Unsteady Option C: Ompressible Option C: Option A: Data A B Option D: Neither A Nor B Option D: Norther A Nor B Option D: Norther A Nor B Option A: Non- Uniform Flow Option C: Dotto B: Uniform Flow Option C: Option B: Uniform Flow Option C: Option C: Option B: Uniform Flow Option C: Opt	Qo.	
Option A: 3.0468m Option B: 4.0468m Option D: 5.0468m Option D: 7.0468m Option D: 7.0468m Option D: 7.0468m Option A: Steady Option B: Unsteady Option C: Compressible Option D: Incompressible Option A: Laminar Option A: Laminar Option B: Option B: Option B: Option A: It will be seen to space (i.e length of direction of the direction of flow. Option C: South A & B Option D: Neither A Nor B Option C: Option B: Option C: The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1: is 3.0468m Option C: Option A: Option C:		
Option B:	Ontion A:	1
Option C: 5.0468m Option D: 7.0468m Q9. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option C: Compressible Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11. is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option B: Uniform Flow Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Option D: 7.0468m Og. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option B: Unsteady Option D: Incompressible Option D: Incompressible Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Option D: Neither A Nor B Option D: Non- Uniform Flow Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Option D: Neither A Nor B Option D: Neither A Nor B Option D: Non- Uniform Flow Option B: Uniform Flow Option B: Option D: Neither A Nor B Option A: O.3926 m³/sec Option A: 0.3926 m³/sec Option B: 0.3926 m³/sec Option C: 1.3926 m³/sec Option D: 926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Q9. If flow in which the fluid characteristics like velocity, pressure, density etc at a point do not change with time then that type of flow is called Option A: Steady Option B: Unsteady Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11. is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow.) Option A: Non-Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Option A: Steady Option B: Unsteady Option C: Compressible Option D: Incompressible Option A: Laminar Option B: Unsteady Option C: Discourse of the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Option A: Is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Option D: Neither A Nor B Option D: Neither A Nor B Option C: Joseph A: Section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option C: 1.03926 m³/sec Option D: Joseph A: Section D: Section	Option D.	7.0406111
Option A: Steady Option B: Unsteady Option C: Compressible Option D: Incompressible Option A: Laminar Option B: Unsteady Option C: Discourse of the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Option A: Is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Option D: Neither A Nor B Option D: Neither A Nor B Option C: Joseph A: Section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option C: 1.03926 m³/sec Option D: Joseph A: Section D: Section	<u>09</u>	If flow in which the fluid characteristics like velocity pressure density etc. at a
Option A: Steady Option B: Unsteady Option C: Compressible Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	Q).	
Option B: Unsteady Option C: Compressible Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	Ontion A:	
Option C: Compressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11. is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non-Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: lis defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		y .
Option D: Incompressible Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11. is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Q10. If the Reynolds number is less than 2000 the flow is called Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11		-
Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	орион В.	neompressione
Option A: Laminar Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11	010	If the Reynolds number is less than 2000 the flow is called
Option B: Turbulent Option C: Both A & B Option D: Neither A Nor B Q11		· · · · · · · · · · · · · · · · · · ·
Option C: Both A & B Option D: Neither A Nor B Q11. Q11. Q11.		
Option D: Neither A Nor B Q11 is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: jed m³/sec Option D: jed m³/sec Option D: jed m³/sec Option D: jed m³/sec		
Q11 is defined as that type of flow in which the velocity at any given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Option D: join a join a join a join and a join an		
given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non-Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.	opiion 2.	
given time does not change with respect to space (i.e length of direction of the direction of flow. Option A: Non-Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Option D: is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.	011.	is defined as that type of flow in which the velocity at any
direction of flow. Option A: Non- Uniform Flow Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec		
Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Option B: Uniform Flow Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13	Option A:	Non- Uniform Flow
Option C: Both A & B Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		Uniform Flow
Option D: Neither A Nor B Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		Both A & B
Q12. The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.	Option D:	Neither A Nor B
Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Q13	•	
Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Option D: 926 m³/sec Q13	Q12.	The diameter of a pipe at the section 1 and 2 are 10 cm and 15 cm respectively.
at section 1 is 5 m/sec. Option A: 0.03926 m³/sec Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13. is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.		
Option B: 0.3926 m³/sec Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13		
Option C: 1.03926 m³/sec Option D: 926 m³/sec Q13	Option A:	0.03926 m³/sec
Option D: 926 m³/sec Q13 is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.	Option B:	$0.3926 \text{ m}^3/\text{sec}$
Option D: 926 m³/sec Q13 is defined as a scalar function of space and time such that negative derivative with respect to any direction gives the fluid velocity in that direction.	Option C:	1.03926 m³/sec
that negative derivative with respect to any direction gives the fluid velocity in that direction.	Option D:	926 m³/sec
that negative derivative with respect to any direction gives the fluid velocity in that direction.		
that direction.	Q13.	
that direction.		that negative derivative with respect to any direction gives the fluid velocity in
Option A: Stream Function.		that direction.
	Option A:	Stream Function.

Option B:	Velocity Potential Function.
Option C:	Laminar
Option D:	Equipotential
Option B.	Equipotential
Q14.	A grid obtained by drawing a series of equipotential lines and stream lines is called
Option A:	Flow net.
Option B:	Irrotational.
Option C:	Local acceleration.
Option D:	Convective acceleration.
Q15.	Water is flowing through a pipe of 5cm Diameter under a pressure of 29.43N/cm ² (gauge) and with a mean velocity of 2 m/sec. Find the total head or total energy per unit weight of the water at cross-section which is 5m above the datum line.
Option A:	24.305 m.
Option B:	44.305 m.
Option C:	29.305 m.
Option D:	35.203 m.
Q16.	Assumption made in the derivation of Bernoulli's equation:
Option A:	The fluid is incompressible.
Option B:	The flow is steady.
Option C:	Both A & B
Option D:	Neither A Nor B
Q17.	A pipe through which water is flowing is having diameter 20 cm and 10 cm at cross-section 1 and 2 respectively. The velocity of water at section 1 is given 4 m/s. Find velocity head at section 1?
Option A:	0.415 m
Option B:	0.815 m
Option C:	0.615 m
Option D:	0,215 m
Q18.	If the total energy at point M is greater then total energy at point N. then direction of flow will be
Option A:	N to M
Option B:	M to N
Option C:	Both A & B
Option D:	Neither A Nor B
Q19.	If the head of liquid is less than 5 times the depth of orifice, the orifice is called orifice
Option A:	Large
Option B:	Small
Option C:	Fully submerged
Option D:	partially submerged

020	The sheet of water flavoing through a notal arrayain is called
Q20.	The sheet of water flowing through a notch or weir is called
Option A:	Pressure
Option B:	Force
Option C:	Nappe
Option D:	Irrotational
Q21.	The head of water over the center of an orifice of diameter 20 mm is 1m. The actual discharge through the orifice is 0.85 lit/sec. find the coefficient of discharge?
Option A:	0.11
Option B:	0.21
Option C:	0.61
Option D:	0.91
Q22.	The head of water over a rectangular notch is 900 mm. the discharge is 300 lit/sec. Find the length of notch, when Cd=0.62
Option A:	250 mm
Option B:	350 mm
Option C:	121 mm
Option D:	192 mm
Q23.	The bottom edge of a notch or top of a weir over which the water flows is known as
Option A:	Crest or Sill
Option B:	Vein
Option C:	Both A & B
Option D:	Neither A Nor B
Q24.	is the flow in which fluid moves radially inwards towards at a point where it disappears at a constant rate.
Option A:	Source.
Option B:	Sink.
Option C:	Uniform.
Option D:	Non-Uniform.
Q25.	is defined as the ratio of the actual discharge from an orifice to the theoretical discharge from the orifice.
Option A:	Coefficient of Discharge.
Option B:	Coefficient of velocity.
Option C:	Coefficient of contraction.
Option D:	Coefficient of power.