Program: First Year Engineering Curriculum Scheme: Rev2019 'C' Scheme Examination: First Year Semester I

Course Code: FEC105 and Course Name: Basic Electrical Engineering

Time: 1 hour Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks.

Q1.	Find the voltage across 2Ω resistor due to 20V source in the circuit shown below
	20 A 10 E 20V E 2 = 10V
Option A:	1V
Option B:	1.5V
Option C:	2V
Option D:	2.5V
Q2.	What is the correct expression for the RMS value of current?
Option A:	$I_{rms}=I_m/2$
Option B:	$I_{rms}=I_m/\sqrt{2}$
Option C:	$I_{rms}=I_m/4$
Option D:	$I_{rms}=I_{m}$
Q3.	In a balanced three-phase system-delta load, if we assume the line voltage is
	$V_{RY} = V \angle 0^0$ as a reference phasor. Then the source voltage V_{YB} is?
Option A:	$V \angle 0^0$
Option B:	$V \angle -120^{\circ}$
Option C:	$V \angle 120^{0}$
Option D:	$V \angle 240^{\circ}$
Q4.	The full-load copper loss of a transformer is 1600 W. At half-load, what will be the copper loss?
Option A:	6400 W
Option B:	1600 W
Option C:	800 W
Option D:	400 W
Q5.	Which of the following load application normally needs starting torque more than
	the rated torque?
Option A:	Blowers
Option B:	Conveyors
Option C:	Air compressors
Option D:	Centrifugal pumps
06	Determine the equivalent Theyenia's welt between terminals A 1.D.: 41
Q6.	Determine the equivalent Thevenin's voltage between terminals A and B in the circuit shown below
	Circuit Showii delow

	Examination 2020
	10 5 A
Option A:	0.333V
Option B:	3.33V
Option C:	33.3V
Option D:	333V
Spiron 2.	
Q7.	If the phasors are drawn to represent the maximum values instead of the RMS values, what would happen to the phase angle between quantities?
Option A:	Increases
Option B:	Decreases
Option C:	Remains constant
Option D:	Becomes zero
Q8.	Which type of device is a stepper motor?
Option A:	Electromechanical
Option B:	Electrochemical
Option C:	Embedded system
Option D:	Electromagnetic
Q9.	In normal dc machines operating at full-load conditions, which is the most powerful electromagnet?
Option A:	Field winding
Option B:	Interpole Winding
Option C:	Interpole and compensating winding together
Option D:	Armature winding
_	
Q10.	A three phase, balanced delta connected load of (4+j8) Ω is connected across a 400V, 3Φ balanced supply. Determine the phase current I_R . Assume the phase sequence to be R_{YB} .
Option A:	44.74∠-63.4° A
Option B:	44.74∠63.4° A
Option C:	45.74∠-63.4° A
Option D:	45.74∠63.4° A
1	
Q11.	Find the voltage drop across 6Ω resistor in the circuit below, using Norton's
	Theorem
	200
	= _{20v} \$ ₁₀ \$ ₆
Option A:	6.58V
Option B:	7.58V
Option C:	8.58V
Option C:	9.58V
Option D.	7.50 \$

Q12.	A three phase induction motor is sometimes called a generalized transformer in so
	far as voltage and frequency transformation has been concerned. How a three
	phase induction motor operates when rotor frequency is equal to stator frequency?
Option A:	It will not operate
Option B:	It will operate as induction motor only
Option C:	It will operate as induction generator
Option D:	It will operate in braking mode
-	
Q13.	If two current phasors, having magnitude 5A and 10A intersect at an angle of 60
Q10.	degrees, calculate the resultant current.
Option A:	12.23A
Option B:	12.54A
Option C:	13.23A
Option D:	14.24A
Орион В.	17.27/1
Q14.	Calculate the total current in the circuit using source transformation
Q14.	Calculate the total current in the electic using source transformation
	ana A7 kohm 3 kohm
	(↑) ≥ 5 wohn == 3v
Option A:	2.3mA
Option B:	4.3mA
Option C:	3.3mA
Option D:	1.3mA
Option D.	1.51111
015	For achieving high starting torque and high operating efficiency an induction
Q15.	For achieving high starting torque and high operating efficiency an induction motor should have rotor circuit resistance and circuit resistance
Q15.	motor should have rotor circuit resistance and circuit resistance
	motor should have rotor circuit resistance and circuit resistance under operating condition.
Option A:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low
Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high
Option A: Option B: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low
Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high
Option A: Option B: Option C: Option D:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high
Option A: Option B: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power
Option A: Option B: Option C: Option D: Q16.	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer?
Option A: Option B: Option C: Option D: Q16. Option A:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems
Option A: Option B: Option C: Option D: Q16. Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems
Option A: Option B: Option C: Option D: Q16. Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems Telecom systems
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH . The
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH . The circuit is connected to a 100V , 50Hz sinusoidal supply. Calculate the phase
Option A: Option B: Option C: Option D: Q16. Option A: Option A: Option B: Option C: Option D: Q17.	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH. The circuit is connected to a 100V, 50Hz sinusoidal supply. Calculate the phase difference.
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D: Q17.	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH . The circuit is connected to a 100V , 50Hz sinusoidal supply. Calculate the phase difference. -55.1
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D: Q17. Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH . The circuit is connected to a 100V , 50Hz sinusoidal supply. Calculate the phase difference. -55.1 55.1
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D: Q17. Option A: Option A: Option A: Option C: Option C: Coption C: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH. The circuit is connected to a $100V$, $50Hz$ sinusoidal supply. Calculate the phase difference. -55.1 55.1 66.1
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D: Q17. Option A: Option B:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH. The circuit is connected to a 100V, 50Hz sinusoidal supply. Calculate the phase difference. -55.1 55.1
Option A: Option B: Option C: Option D: Q16. Option A: Option B: Option C: Option D: Q17. Option A: Option A: Option C: Option C: Option C: Option C:	motor should have rotor circuit resistance and circuit resistance under operating condition. High, low Low, high Low, low High, high Which of the following is the example to describe the efficiency of power transfer? Communication systems Power utility systems Instrumentation systems Telecom systems A resistance of 7Ω is connected in series with an inductance of 31.8mH. The circuit is connected to a $100V$, $50Hz$ sinusoidal supply. Calculate the phase difference. -55.1 55.1 66.1

	R _z between Y and Z to form a delta connection, then after transformation to star,
	the resistor at node X is?
Option A:	$R_x R_y / (R_x + R_y + R_z)$
Option B:	$R_x R_z / (R_x + R_y + R_z)$
Option C:	$R_zR_y/(R_x+R_y+R_z)$
Option D:	$(R_x+R_y)/(R_x+R_y+R_z)$
Q19.	Find the equivalent resistance between node 1 and node 3 in the star connected
	circuit shown below
	₹ _{R2}
	1 NO 1 NO 2
Option A:	30Ω
Option B:	31Ω
Option C:	32Ω
Option D:	33Ω
Орион В.	3322
Q20.	A single phase transformer has specifications as 250 KVA, 11000V/415V, 50 Hz.
Q20.	What are the values of primary and secondary currents?
Option A:	Primary current = 602.4A, Secondary current = 22.7A
Option B:	Secondary current = 202.7A, Primary current = 602.4A
Option C:	Primary current = 22.7A, Secondary current = 602.4A
Option D:	Primary current = 11.35A, Secondary current = 301.2A
Option D.	Fillinary Current – 11.55A, Secondary Current – 501.2A
Q21.	Find the current in the 3Ω resistor of the given network using Superposition
Q21.	principle.
	9111C1p1C.
	20v ± \$ ① s.x.
Option A:	2.5A
Option B:	3.125A
Option C:	6.525A
-	5.625A
Option D:	J.023A
Q22.	For a transformer given of 100 kVA, 220V/6000V transformer, short circuit test
Q22.	is performed. What current rating is needed?
Option A:	30A
	445A
Option B:	60A
Option C:	
Option D:	55A
022	The three immederates $7 = 20.200 \text{O} 7 = 40.000 \text{O} 7 = 10.000 \text{O}$
Q23.	The three impedances $Z_1 = 20 \angle 30^{\circ} \Omega$, $Z_2 = 40 \angle 60^{\circ} \Omega$, $Z_3 = 10 \angle -90^{\circ} \Omega$ are
O 4: A	delta-connected to a 400V, 3Φ system. Determine the phase current I _Y
Option A:	(10-j0) A
Option B:	(10+j0) A
Option C:	(-10+j0) A
Option D:	(-10-j0) A

Q24.	Find the equivalent resistance at node A in the delta connected circuit shown in the figure below.
	R2 R3 13 D
Option A:	1Ω
Option B:	2Ω
Option C:	3Ω
Option D:	4Ω
Q25.	The input power to a three-phase load is 10kW at 0.8 Pf. Two watt meters are
	connected to measure the power. Find the reading of higher reading wattmeter.
Option A:	7.165
Option B:	6.165
Option C:	6.165
Option D:	4.165