Program: First Year Engineering Curriculum Scheme: Rev2016 Examination: First Year Semester I

Course Code: FEC105 and Course Name: Basic Electrical Engineering

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Find the voltage across 2Ω resistor due to 20V source in the circuit shown below
Option A:	1V
Option B:	1.5V
Option C:	2V
Option D:	2.5V
Q2.	What is the correct expression for the RMS value of current?
Option A:	$I_{\rm rms} = I_{\rm m}/2$
Option B:	$I_{\rm rms} = I_{\rm m}/\sqrt{2}$
Option C:	$I_{rms} = I_m/4$
Option D:	I _{rms} =I _m
Q3.	In a balanced three-phase system-delta load, if we assume the line voltage is $V_{RY} = V \angle 0^0$ as a reference phasor. Then the source voltage V_{YB} is?
Option A:	$V \angle 0^0$
Option B:	V∠-120 ⁰
Option C:	V∠120 ⁰
Option D:	V∠240 ⁰
±	
Q4.	The full-load copper loss of a transformer is 1600 W. At half-load, what will be the copper loss?
Option A:	6400 W
Option B:	1600 W
Option C:	800 W
Option D:	400 W
Q5.	Calculate the maximum power delivered across R _L of the circuit given.
Option A:	900W
Option B:	1025W
Option C:	2025W
Option D:	1500W

Q6.	Determine the equivalent Thevenin's voltage between terminals A and B in the
	circuit shown below
	A
Option A:	0.333V
Option B:	3.33V
Option C:	33.3V
Option D:	333V
Q7.	If the phasors are drawn to represent the maximum values instead of the RMS
	values, what would happen to the phase angle between quantities?
Option A:	Increases
Option B:	Decreases
Option C:	Remains constant
Option D:	Becomes zero
Q8.	In the figure shown below, the current through loop 1 be I_1 and through the loop 2
	be I_2 , then the current flowing through the resistor R_3 will be?
	$ \bigcirc \forall 1 \qquad \forall \forall \forall \forall \forall \forall \forall \forall \forall \forall$
Option A:	
Option B:	
Option C:	
Option D:	11+12
Q9.	Consider the circuit shown below. Find the current I_1 (A).
	$\varphi_{10}^{V1} = \varphi_{10}^{V1}$
Option A:	
Option B:	1.55
Option C:	1.00
Option D:	
010	A three phase balanced delta connected load of $(4+i8)$ O is connected across a
Q10.	$400V$ 3 \oplus balanced supply Determine the phase current I _n Assume the phase
	sequence to be R_{VP}
Option A.	44 74/-63 4 ⁰ A
Ontion R:	44 74 / 63 4 ⁰ A
Option C.	45 74 - 63 4 ⁰ A
Option D	45 74/63 4 ⁰ A
option D.	
1	

Q11.	Find the voltage drop across 6Ω resistor in the circuit below, using Norton's
	Theorem
Option A:	6.58V
Option B:	7.58V
Option C:	8.58V
Option D:	9.58V
Q12.	Find the voltage at node P in the figure shown.
Ontion A:	8V
Option R:	
Option C:	10V
Option D:	11V
F	
Q13.	If two current phasors, having magnitude 5A and 10A intersect at an angle of 60 degrees, calculate the resultant current.
Option A:	12.23A
Option B:	12.54A
Option C:	13.23A
Option D:	14.24A
014	
Q14.	Calculate the total current in the circuit using source transformation
	9mA A Kohm 3 kohm
	↓ ≥ 5 kohm → 3V
Omtion A.	
Option A:	2.5mA
Option C:	4.5IIIA 3.3mA
Option D:	1.3mΔ
Option D.	
015	Determine the equivalent Thevenin's voltage between terminals A and B in the
2.00	circuit shown below.
Option A.	5
Option R:	5
Option C.	25
Option D	35
Sphon D.	

Q16.	Which of the following is the example to describe the efficiency of power
-	transfer?
Option A:	Communication systems
Option B:	Power utility systems
Option C:	Instrumentation systems
Option D:	Telecom systems
Q17.	A resistance of 7Ω is connected in series with an inductance of 31.8 mH. The circuit is connected to a 100V, 50Hz sinusoidal supply. Calculate the phase difference.
Option A:	-55.1
Option B:	55.1
Option C:	66.1
Option D:	-66.1
Q18.	If a resistor R_x is connected between nodes X and Y, R_y between X and Y, R_z between Y and Z to form a delta connection, then after transformation to star, the resistor at node X is?
Option A:	$R_x R_y / (R_x + R_y + R_z)$
Option B:	$R_xR_z/(R_x+R_y+R_z)$
Option C:	$R_z R_y / (R_x + R_y + R_z)$
Option D:	$(R_x+R_y)/(R_x+R_y+R_z)$
Q19.	Find the equivalent resistance between node 1 and node 3 in the star connected circuit shown below
Option A:	30Ω
Option B:	31Ω
Option C:	32Ω
Option D:	33Ω
Q20.	A single phase transformer has specifications as 250 KVA, 11000V/415V, 50 Hz. What are the values of primary and secondary currents?
Option A:	Primary current = 602.4A, Secondary current = 22.7A
Option B:	Secondary current = 202.7A, Primary current = 602.4A
Option C:	Primary current = 22.7A, Secondary current = 602.4A
Option D:	Primary current = 11.35A, Secondary current = 301.2A
Q21.	Find the current in the 3Ω resistor of the given network using Superposition
	principle.
Option A:	2.5A

Option B:	3.125A
Option C:	6.525A
Option D:	5.625A
Q22.	For a transformer given of 100 kVA, 220V/6000V transformer, short circuit test
	is performed. What current rating is needed?
Option A:	30A
Option B:	445A
Option C:	60A
Option D:	55A
Q23.	The three impedances $Z_1 = 20 \angle 30^\circ \Omega$, $Z_2 = 40 \angle 60^\circ \Omega$, $Z_3 = 10 \angle -90^\circ \Omega$ are
	delta-connected to a 400V, 3Φ system. Determine the phase current I _Y
Option A:	(10-j0) A
Option B:	(10+j0) A
Option C:	(-10+j0) A
Option D:	(-10-j0) A
Q24.	Find the equivalent resistance at node A in the delta connected circuit shown in
	the figure below.
	RI
	AC
	BD
Oution A.	10
Option A:	
Option B:	20
Option C.	
Option D:	452
025	The input newer to a three phase load is 10kW at 0.8 Df. Two watt maters are
Q23.	The input power to a unce-phase toad is tokw at 0.8 PT. Two wall meters are
	connected to measure the nower. Find the reading of higher reading wattmater
Ontion A:	connected to measure the power. Find the reading of higher reading wattmeter.
Option A:	connected to measure the power. Find the reading of higher reading wattmeter.7.1656.165
Option A: Option B:	connected to measure the power. Find the reading of higher reading wattmeter.7.1656.1656.165
Option A: Option B: Option C:	 connected to measure the power. Find the reading of higher reading wattmeter. 7.165 6.165 6.165 4.165