Program: B.E. Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester: VIII

Course Code CE C801 and Course Name: Design and Drawing of Reinforced Concrete Structures

	MODULE 1 COMPREHENSIVE DESIGN OF BUILDING
1.1	The section of singly reinforced beam in which the permissible stress in steel
	and concrete reaches earlier than that in concrete is called
Option A:	Under reinforced section
Option B:	Over reinforced section
Option C:	balanced section
Option D:	Economic section
1.2	The Partial factor of safety for steel in LSM may be taken as
Option A:	1.5
Option B:	1.15
Option C:	1.78
Option D:	3
1.3	Characteristic strength is defined as the value of strength below which not
	more that% of the test results are expected to lie.
Option A:	5
Option B:	15
Option C:	25
Option D:	50
1.4	The design Strength of Concrete is taken as in Limit State of
	Collapse
Option A:	0.45fck
Option B:	0.67fck

Option C:	Fck
Option D:	0.23fck
1.5	Partial safety factor in case of dead load for stability against overturning or
	stress reversal is
Option A:	1.2
Option B:	0.9
Option C:	0.7
Option D:	2.3
1.6	Live load comprises of
Option A:	Permanently attached loads
Option B:	Temporarily attached loads whose value and position may change
Option C:	Permanent as well as temporary loads
Option D:	Snow loads
1.7	The balance moment of resistance of the singly reinforced beam effective
	depth of beam is 450 mm having is 139.73 kNm. If M20 concrete and Fe 415
	steel are used ,the width of the section is
Option A:	250mm
Option B:	200 mm
Option C:	300 mm
Option D:	350 mm
1.8	A beam of cross section of 200mm *450mm and is subjected to bending
	moment of 135 kNm. If M20 concrete and Fe250 steel are used, beam should
	be designed as
Option A:	Singly reinforced beam
Option B:	Doubly reinforced beam
Option C:	Singly as well as doubly reinforced beam
Option D:	Singly reinforced beam with more steel
	l.

1.9	An isolated T beam has an effective span of 4800 mm and flange width of
	800 mm. the flange thickness is 130 mm and the rib is 300 mm wide. The
	effective flange width is
Option A:	1000mm
Option 71.	
Option B:	780 mm
Option C:	350 mm
Option D:	450 mm
1.10	For a T beam, if main reinforcement of slab must be
Ontion A:	movellel to been
Option A:	parallel to beam,
Option B:	Perpendicular to beam
Option C:	Inclined to axis of beam at 30 degrees
Option D:	Partly parallel partly perpendicular
1.11	A simply supported beam has 350mm width and 500 mm effective depth.
	The beam subjected to a factored shear force of 62.5 kN. The nominal shear
	stress in Mpa is
Option A:	0.15
Option B:	0.35
Option C:	0.50
Option D:	0.75
1.12	A beam 300 mm* 600 mm is subjected to factored bending moment of 115
	kNm and factored torsion 45 kNm. The equivalent bending moment is
Option A:	194.41 kNm.
Option B:	102.54 kNm
Option C:	322.12 kNm

Option D:	112.95kNm
1.13	A beam 300 mm* 600 mm is subjected to factored shear force 95 kN and
	factored torsion 45 kNm. The equivalent ultimate shear is
Option A:	100 kN
Option B:	235 kN
Option C:	335 kN
Option D:	475 kN
1.14	What is the max spacing of stirrups for a beam of effective depth 400 mm.
	mm for
Option A:	100 mm
Option B:	150 mm
Option C:	300 mm
Option D:	450 mm
1.15	The load on footing is 1650kN inclusive of its own weight. If safe bearing
	capacity of soil is 100 kN per sq. meter. The diameter of circular footing are
Option A:	4.58 m
Option B:	5.12 m
Option C:	8.19 m
Option D:	1.1 m
1.16	What is shear resisted by a bent up bar of 16 mm diameter of Fe415 steel.
Option A:	72.21 kN
Option B:	51.06 kN
Option C:	87.81 kN
Option D:	100.23 kN
1.17	Depths of different beams are given. Which of these beams needs side face
	reinforcement.
Option A:	350 mm

Option B:	450 mm
Option C:	950 mm
Option D:	600 mm
1.18	For a one way slab the area of main reinforcement required is 300 mm. find
	spacing (centre to centre distance) for 8 mm bar.
Option A:	250 mm
Option B:	125 mm
Option C:	166 mm
Option D:	400 mm
1.19	For deflection control of slab, the basic span to effective depth ratio for
	cantilever slab is
Option A:	7
Option B:	20
Option C:	26
Option D:	40
1.20	In case of one way slab, the main reinforcement is
Option A:	Along shorter span
Option B:	Along longer span
Option C:	Along both shorter and longer spans
Option D:	At corners only
1.21	The depth of slab is 250 mm. the Fe 415 distribution steel is provided. Area
	of distribution steel in sq mm is
Option A:	300
Option B:	400
Option C:	150
Option D:	100

1.22	If for Columns with helical reinforcement, if the requirement for ratio of the
	volume of helical reinforcement to the volume of the core is satisfied then
	Load Carrying capacity of column is increased by percent compared to
	similar column with lateral tie.
Option A:	5
Option B:	4
Option C:	6
Option D:	7
1.23	A RCC short column is 400mm*400 mm is carrying a factored load of 1800
	kN. If M20 concrete and Fe 415 steel are used, the area of steel required in
	sq. mm is
Option A:	1287
Option B:	869
Option C:	1926
Option D:	2541
1.24	A DOC 1 4 1 1 400 \$405 1 1 1 C 1105 N 16
1.24	A RCC short column is 400mm*425 mm is carrying a load of 1195kN. If
	M20 concrete and Fe 415 steel are used, the area of steel required in sq. mm
	1S
Option A:	1287
Option B:	869
Option C:	1560
Option D:	2541
1.25	The load on footing is 1650kN inclusive of its own weight. If safe bearing
	capacity of soil is 150 kN per sq. meter. The dimensions of square footing are
Option A:	3.32m*3.32m
Option B:	2.42m *2.52 m
Option C:	1.43m*1.43m

Option D:	2.81m*2.81m
	MODULE 2 STAIRCASE
2.1	The pitch of stair should never exceed
2.1	The pitch of stair should hever exceed
Option A:	20°
Option B:	25°
Option C:	30°
Option D:	40°
2.2	A series of steps without any platform, break or landing in their direction, is
	called
Option A:	Riser
Option B:	Tread
Option C:	Flight
Option D:	Nosing
2.3	Live load on stairs not subjected to overcrowding iskN/m ²
Option A:	1.5
Option B:	6
Option C:	3
Option D:	5
2.4	Landing is provided in stairs for
Option A:	Increasing length of stair
Option B:	To make staircase economical
Option C:	For comfort of users
Option D:	To reduce load
2.5	For dog legged stair case floor to floor height is 3.2 m, rise: 160 mm,
	tread:250mm, depth of waist slab: 200 mm, L.L = 3 kN/Sq.m, F.F= 1
	kN/Sq.m, total working load on stair case is about
Option A:	18 kN/m^2

Option B:	12 kN/m²
Option C:	16 kN/m²
Option D:	20 kN/m^2
2.6	Choose correct value of tread and width of staircase for residential building.
Option A:	250mm and 600 mm
Option B:	250 mm and 1200 mm
Option C:	350mm and 700 mm
Option D:	150 mm and 1000mm
2.7	Live loads on stairs for dwelling houses liable to overcrawding shall be
Option A:	2 kN/m^2
Option B:	2.5 kN/m^2
Option C:	3 kN/m^2
Option D:	5 kN/m ²
	MODULE 3 RETAINING WALL
	The safe bearing capacity of soil is 120kN/m ² , unit weight of soil is
3.1	18kN/m ³ and angle of repose is 30 ⁰ degrees. Minimum depth of foundation
	as per Rankine's formula is
Option A:	0.25 m
Option B:	0.50 m
Option C:	0.74 m
Option D:	1.00 m
3.2	Cantilever retaining walls can safely be used for a height not more than
Option A:	3m
Option B:	4m
Option C:	5m
Option D:	6m
3.3	Which one of the following is the correct statement about retaining wall

Option A:	Toe slab and heel slab are provided at top face
Option B:	Toe slab and heel slab are provided with reinforcement at bottom face
Option C:	Toe slab is provided reinforcement at top face and heel slab at bottom face
Option D:	Toe slab is provided with reinforcement at bottom face and heel slab at top
	face
3.4	Weep holes provided into retaining wall for the purpose of
Option A:	To provide drainage
Option B:	To prevent cracks
Option C:	To avoid friction behind the wall
Option D:	To improve appearance
3.5	The shear key is provided to
Option A:	Avoid sliding failure of the wall
Option B:	Improve appearance
Option C:	Increase passive resistance
Option D:	To resist overturning
3.6	Weight of a retaining wall is 200 kN, coefficeient of friction is 0.65,
	horizontal soil pressure force per metre run of wall is 100 kN. The factor of
	safety against sliding is
Option A:	1.3
Option B:	1.97
Option C:	1.74
Option D:	2.21
3.7	The minimum depth of foundation depends upon
Option A:	Safe bearing capacity of soil
Option B:	Width of stem
Option C:	Provision of weep holes
Option D:	Reinforcement in toe slab

3.8	Weight of a retaining wall is 142 kN, coefficeient of friction is 0.6,
	horizontal soil pressure force per metre run of wall is 54 kN. The factor of
	safety against sliding is
Option A:	1.58
Option B:	2.16
Option C:	3.18
Option D:	1.21
3.9	In counterfort retaining walls the upright slab
Option A:	Acts like cantilever
Option B:	Like fixed beam
Option C:	As a continuous slab
Option D:	Simply supported beam
3.10	To have pressure wholly compressive under the base of a retaining wall of
	width b, the resultant of the weight of the wall and the pressure exerted by the
	retained, earth should have eccentricity not more than
Option A:	b/3
Option B:	b/6
Option C:	b/4
Option D:	b/8
3.11	Cantilever retaining walls can safely be used for a height not more than
Option A:	3m
Option B:	4m
Option C:	5m
Option D:	6m
3.12	Total pressure on the vertical face of a retaining wall of height h acts parallel
	to free surface and from the base at a distance of
Option A:	h/4
Option B:	2h/3
Option C:	h/3

Option D:	h/2
3.13	Minimum grade of concrete for retaining wall is
Option A:	M20
Option B:	M25
Option C:	M30
Option D:	M40
3.14	The heel slab of a retaining wall is subjected to factored bending moment of
	229 kNm. If effective depth of slab is 490 mm, the area of steel required is
	mm2. (use M20 concrete and Fe 415 steel)
Option A:	1521
Option B:	1834
Option C:	1372
Option D:	2738
	Module 4 WATER LANK
4.1	In case of the circular water tank with flexible base, due to internal water
	pressure the wall is subjected to hoop force equal to
	(Y= sp. weight of water, H= depth D= diameter of tank)
Option A:	Υ H (D /2)
Option B:	ΥН
Option C:	Υ H2
Option D:	ΥD
4.2	Haunch reinforcement is provided in circular tanks at corners to avoid
Option A:	Moment
Option B:	Couple
Option C:	Absolute pressure
Option D:	Bursting pressure
4.3	A movement joint which allows the adjoining parts of a structure to slide
	relative to each other with minimum restraint is known as
Option A:	Sliding joint

Option B:	Expansion joint
Option C:	Contraction joint
Option D:	Construction joints
4.4	What will be the hoop force if unit weight of water= Υ =9.81KN/m3 , height
	of tank=H= 5m, Diameter of circular tank= D= 10m.
Option A:	125 Kn
Option B:	383 kN
Option C:	245 kN
Option D:	90 kN
4.5	A rectangular water tank is resting on ground. If pull in wall at a level is
	58860 N, the area of steel required to resist pull is mm2 . (Use Fe415
	steel)
Option A:	392
Option B:	492
Option C:	183
Option D:	256
4.6	Wall of a circular water tank with flexible base is 265 mm thick. The vertical
	distribution steel required is mm2.
Option A:	125
Option B:	418
Option C:	795
Option D:	129
4.7	If front counterfort are not provided then toe slab is designed as
Option A:	Cantilever slab
Option B:	Simply supported slab
Option C:	Fixed slab
Option D:	Continuous slab
	•

4.8	A rectangular water tank is resting on ground. If pull in wall at a level is	
	49050 N, the area of steel required to resist pull is mm2 . (Use Mild	
	steel steel)	
Option A:	392	
Option B:	427	
Option C:	183	
Option D:	256	
4.9	For a water tank of size 4m*9m, the longer wall is designed as	
Option A:	Vertical cantilevers	
Option B:	Walls fixed at both ends	
Option C:	Horizontal cantilevers	
Option D:	Walls simply supported at ends.	
4.10	If front counterfort are provided then toe slab is designed as	
Option A:	Cantilever slab	
Option B:	Simply supported slab	
Option C:	Fixed slab	
Option D:	Continuous slab	
4.11	An elevated water tank is provided so that	
Option A:	Water can be provided at gravity pressure to large population	
Option B:	To reduce water pressure	
Option C:	To reduce soil pressure on walls of tank	
Option D:	To reduce cost of tank	
4.12	Net load on heel slab is	
Option A:	Downward load	
Option B:	Upward load	
Option C:	Horizontal load	
Option D:	Vertically upward load	
	1	

4.13	The circular water tank with rigid base, the upper portion of wall near top is	
	having predominantly	
Option A:	Simply supported action	
Option B:	Cantilever action	
Option C:	hoop action	
Option D:	Sliding action	
4.14	The circular water tank with rigid base, the lower portion of wall near base is	
	having predominantly	
Option A:	Simply supported action	
Option B:	Cantilever action	
Option C:	Bending action	
Option D:	Sliding action	
4.15	For circular water tank capacity of tank 800m ³ , depth of water tank is limited	
	to H=5m, then what will be the diameter of circular water tank?	
Option A:	14.27m	
Option B:	203.71m	
Option C:	28.54m	
Option D:	7.85m	
4.16	Heel slab of a counterfort retaining wall is designed as	
Option A:	Continuous horizontal slab	
Option B:	Continuous vertical slab	
Option C:	Simply supported slab	
Option D:	Fixed slab	
4.17	A water tank wall is subjected to a hoop tension of 132788 N. Find spacing of	
	12 mm bars to resist this tension.(MS bars)	
Option A:	95	
Option B:	134	
Option C:	45	

Option D:	252	
4.18	In IS code approximate method table for shear force coefficients, for design	
	of water tank	
Option A:	Positive sign for shear shows inward shear	
Option B:	Positive sign shows out word shear	
Option C:	Positive sign shows out downwords shear	
Option D:	Negative sign shows inward shear	
4.19	Circular water for smaller capacities are not preferred as	
Option A:	They do not look good	
Option B:	The cost of formwork offsets the saving of materials	
Option C:	Circular tanks are structurally inefficient	
Option D:	Rectangular tanks are water tight	
4.20	For design of elevated water tents the handing moment due to havigental	
4.20	For design of elevated water tank the bending moment due to horizontal thrust is taken as P=lateral force, y= vertical distance from hinge.	
Option A:	Py/4	
Option B:	Py/3	
Option C:	Py/6	
Option D:	Py/12	
1		
4.21	To avoid cracks in concrete	
Option A:	A high permissible tensile stress is adopted in steel.	
Option B:	A low permissible tensile stress is adopted in steel	
Option C:	Concrete is allowed to reach its max permissible tensile stress.	
Option D:	Factor of safety against cracking is kept high compared to factor of safety required for structural safety.	
	MODULE 5 EARTHQUAKE RESISTANT DESIGN OF STRUCTURES	
5.1	Which of the following statements best describes the state of earthquake	
	prediction?	
Option A:	scientists can accurately predict the time and location of almost all	
Option 71.		
	earthquakes	
Option B: scientists can accurately predict the time and location of about		
	earthquakes	
Option C:	scientists can accurately predict the time and location of about 50% of all	
	earthquakes	
Option D:	scientists can characterize the seismic risk of an area, but can not yet	
1		
	accurately predict most earthquakes	

5.2	State which statement is correct.	
Option A:	Most earthquakes can be predicted	
Option B:	The time and location of most major earthquakes can be predicted several	
	days in advance	
Option C:	Earthquakes are caused by heavy winds	
Option D:	P waves travel faster	
5.3	New Zealand is an example of	
Option A:	Convergent plate boundary	
Option B:	Divergent plate boundary	
Option C:	Conservative plate boundary	
Option D:	Both convergent and conservative plate boundaries	
5.4	Love waves cause motion similar to S waves	
Option A:	With vertical component	
Option B:	Without vertical component	
Option C:	With inclined component	
Option D:	Without inclined component at 45 degrees	
5.5	Mercalli indices of VII or higher measure the effects of an earthquake on	
Option A:	cows	
Option B:	horses	
Option C:	people	
Option D:	Buildings	
5.6	Surface along which the block of rock slip is called?	
Option A:	Fault zone	
Option B:	Fault Plane	
Option C:	Fault scarp	
Option D:	None of these	

5.7	On a seismic record, the S-P time interval is the in arrival time	
	between the P- and S waves.	
Option A:	DELAY	
Option B:	Twice the delay	
Option C:	Four times the delay	
Option D:	Five times the delay	
5.8	Given three differently located seismic stations, the time-travel graph can be	
	used to determine the position of the	
Option A:	Epicentre	
Option B:	Radius of earth	
Option C:	Elasticity	
Option D:	Mass of earth	
5.9	From the S-P interval a seismologists can determine the to an	
	earthquake.	
Option A:	Distance	
Option B:	Earthquake force	
Option C:	Mass of earth	
Option D:	Elasticity	
5.10	While considering the design of R.C. buildings for providing ductility, IS	
	codes prohibit the steel grade greater than	
Option A:	Fe 250	
Option B:	Fe 320	
Option C:	Fe 415	
Option D:	Fe 550	
5.11	The height of building is 10.5m. base dimension is 8m. the fundamental	
	natural period of vibration is	
Option A:	0.334 sec	
Option B:	0.9 sec	

Option C:	1.5 sec	
Option D:	2.1 sec	
5.12	Now India is divided into seismic zones.	
Option A:	1	
Option B:	2	
Option C:	3	
Option D:	4	
5.13	During an eathquke which of following may be generated	
Option A:	Draught	
Option B:	Tsunami	
Option C:	Heavy rains	
Option D:	Low temperatures	
5.14	Which of the following is depends on shear strength of the material?	
Option A:	Density of material	
Option B:	Internal friction	
Option C:	Position of material	
Option D:	Mass of the material	
5.15	As rupture along a fault initiates, waves of energy travel outward from the	
	hypocenter in a:	
Option A:	linear fashion,	
Option B:	linear fashion	
Option C:	a spherical fashion,	
Option D:	none of the above	
5.16	At a seismic station the first waves to arrive are	
Option A:	P Wave	
Option B:	S Wave	

Option C:	Surface wave	
Option D:	Love wave	
5.17	At a seismic station the last waves to arrive are	
Option A:	P Wave	
Option B:	S Wave	
Option C:	Surface wave	
Option D:	light ray waves	
5.18	Love waves are .	
Option A:	Dispersive	
Option B:	Displace material in elliptical path	
Option C:	Fastest among all	
Option D:	Are principal component of ground roll	
5.19	are the most destructive to buildings.	
Option A:	P Wave	
Option B:	S Wave	
Option C:	P waves are two times than S wave	
Option D:	P and S wave similar	
5.20	Each unit increase in magnitude on the Richter scale corresponds to an	
	increase in seismic activity.	
Option A:	10	
Option B:	100	
Option C:	50	
Option D:	25	
5.21	Great earthquakes, on average, occur	
Option A:	30,000 times annually	
Option B:	500 times annually	

Option C:	20 times annually
Option D:	once every 5 to 10 years
5.22	The modified Mercalli scale varies from to
Option A:	I to XII
Option B:	I to X
Option C:	I to VII
Option D:	I to IV
	MODULE 6 PRESTRESSED CONCRETE
6.1	A post tensioned beam has span of 25m. If the slip at the jacking end is 4
	mm, and E=210 kN/mm ² , the percentage loss of stress due to this cause is
Option A:	12.2 N/mm ²
_	
Option B:	33.6 N/mm ²
Option C:	18.3 N/mm ²
	2. = 27. 2
Option D:	54.7 N/mm ²
6.2	When the prostruction colds is magained through your or beam noint
	When the prestressing cable is passing through upper kern point
Option A:	the stress at the lower fibre of the beam is zero.
Option B:	the stress at the lower kern point is zero.
Option C:	the stress at the centroidal axis is zero
Option D:	the stress at the top fibre of the beam is zero.
(2	The remark of lead halous is 1 (1) 1 (1) 0
6.3	The concept of load balancing is useful in selecting?
Option A:	Anchorage profile
Ontion D.	Shaft profile
Option B:	Shaft profile
Option C:	Tendon profile

Option D:	Span profile
6.4	A prestressed concrete beam is loaded with two point loads .The profile of the cable is laid based on the load balancing concept, the shape of profile is
Option A:	Parabolic
Option B:	Triangular
Option C:	Trapezoid
Option D:	Circular
6.5	From the following which steel grade is recommended as tendons for post tensioned concrete girder.
Option A:	Fe 250
Option B:	Fe 415
Option C:	Fe 275
Option D:	Fe 1500
6.6	The pressure line is also known as
Option A:	C line
Option B:	E line
Option C:	G line
Option D:	I line
6.7	If in a post tensioned beam the age of concrete at prestress transfer is 7 days. If E=210 kN/mm ² , the loss in prestress due to residual shrinkage strain is
Option A:	44 N/mm ²
Option B:	8 N/mm ²

Option C:	23 N/mm ²	
Option D:	32 N/mm ²	
6.8	The change in the external moments in the elastic range of prestressed	
	concrete beam results in	
Option A:	Bending moment in pressure line	
Option B:	Torsion in pressure line	
Option C:	Flexure in pressure line	
Option D:	Shift of the pressure line	
6.9	The method of prestressing the concrete after it attains its strength is	
	known as	
Option A:	Pre tensioning	
Option B:	Post tensioning	
Option C:	Chemical prestressing	
Option D:	Axial prestressing	
6.10	From the following which concrete grade is recommended for posttensioned	
	concrete girder.	
Option A:	M 20	
o pulou i i.		
Option B:	M 40	
Option C:	M 15	
Option D:	M 25	
6.11	The frictional and anchorage slip losses are observed in	
Option A:	Post tensioned members	
Option B:	Pre tensioned members	
	1	

Option D: Axial member 6.12 In which method the prestress is developed due to the bond between the concrete and steel? Option A: Pre tensioning Option B: Post tensioning Option C: Thermo electric prestressing 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option C: 4 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system Option C: Gifford-Udall system Option D: Hover's long line method	Option C:	Ruptured members	
concrete and steel? Option A: Pre tensioning Option B: Post tensioning Option C: Thermo electric prestressing Option D: Prefix beam prestressed 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option C: Concrete beds Option C: Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option D:	Axial member	
concrete and steel? Option A: Pre tensioning Option B: Post tensioning Option C: Thermo electric prestressing Option D: Prefix beam prestressed 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option C: Concrete beds Option C: Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system			
Option A: Pre tensioning Option B: Post tensioning Option C: Thermo electric prestressing Option D: Prefix beam prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	6.12	In which method the prestress is developed due to the bond between the	
Option B: Post tensioning Option C: Thermo electric prestressing Option D: Prefix beam prestressing 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system		concrete and steel?	
Option C: Thermo electric prestressing Option D: Prefix beam prestressing 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option A:	Pre tensioning	
Option D: Prefix beam prestressing 6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option B:	Post tensioning	
6.13 A rectangular prestressed concrete beam 400mm*600mm is subjected to BM of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option C:	Thermo electric prestressing	
of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option C: Gifford-Udall system Option C: Gifford-Udall system	Option D:	Prefix beam prestressing	
of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option C: Gifford-Udall system Option C: Gifford-Udall system			
in N/mm² are Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	6.13	A rectangular prestressed concrete beam 400mm*600mm is subjected to BM	
Option A: 7 N/mm² and 1 N/mm² Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system		of 72kNm. If the axial prestreesing force is 960 kN, the extreme fibre stresses	
Option B: 4 N/mm² and 5 N/mm² Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system		1	
Option C: 4 N/mm² and 9 N/mm² Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option A:	7 N/mm ² and 1 N/mm ²	
Option D: 5 N/mm² and 1 N/mm² 6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option B:	4 N/mm ² and 5 N/mm ²	
6.14 The tendons in the pretensioning system are tensioned between Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option C:	4 N/mm ² and 9 N/mm ²	
Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option D:	5 N/mm ² and 1 N/mm ²	
Option A: Rigid anchorages Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system			
Option B: Hydraulic jacks Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	6.14	The tendons in the pretensioning system are tensioned between	
Option C: Concrete beds Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option A:	Rigid anchorages	
Option D: Variable beams 6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option B:	Hydraulic jacks	
6.15 Which is one of the systems used for pretensioning Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option C:	Concrete beds	
Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system	Option D:	Variable beams	
Option A: Magnel-Balton system Option B: Freyssinet system Option C: Gifford-Udall system			
Option B: Freyssinet system Option C: Gifford-Udall system	6.15	Which is one of the systems used for pretensioning	
Option C: Gifford-Udall system	Option A:	Magnel-Balton system	
	Option B:	Freyssinet system	
Ontion D: Hover's long line method	Option C:	Gifford-Udall system	
Sphon D. Thoyer 5 long line inculou	Option D:	Hoyer's long line method	

Program: B.E. Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester: VIII

Course Code CE C801 and Course Name: Design and Drawing of Reinforced Concrete Structures

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D'
	Module 1
Q1.	А
Q2.	В
Q3.	А
Q4	В
Q5	В
Q6	В
Q7	А
Q8.	В
Q9.	В
Q10.	В
Q11.	В
Q12.	А
Q13.	С
Q14.	С
Q15.	А
Q16.	В
Q17.	С
Q18.	С

Q19.	A
Q20.	А
Q21.	А
Q22.	А
Q23.	С
Q24.	С
Q25.	А
	MODULE 2
1	
2	С
3	C.
4	C C C
5	<u> </u>
6	В
7	D
	MODULE 3
1	С
2	D
3	D
4	Α
	Α
5 6	Α
7	A
8	A
9	C
10	В
11	D
12	C
13	A
14	С
	MODULE 4
1	A A
2	D
3	
4	A C
5	A
6	С
7	С
8	В
9	Α
10	D
11	A
12	Α
<u>L</u>	

13	С
14	В
15	Α
16	Α
17	Α
18	Α
19	В
20	А
21	D
	MODULE 5
1	D
2	D
3	D
4	В
5	D
5 6	В
7	A
8	A
9	A
10	С
11	В
12	D
13	В
14	В
15	С
16	A
17	С
18	A
19	В
20	Α
21	D
22	A
	MODULE 6
1	В
2	В
3	C
4	C
5	D
6	C
7	A
8	D
9	В
10	В
11	A
12	A
13	A
14	A
15	D
13	