Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: ETC502 and Course Name: Analog Communication

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

What do you understand by the term MODULATION?
A way for data and computer communication
A method in which one of the properties of a carrier signal varies in proportion to
an instantaneous value of modulation signal.
A suitable method for long distance communication
A numerical coded communication
Why a sinusoidal signal is considered analog?
It is positive for one half cycle
It moves in both positive and negative direction
It has infinite number of amplitudes in the range of values of the independent variable
It is negative for one half cycle
Noise figure measures the
Power degradation
SNR degradation
Noise degradation
None of the mentioned
is defined as the ratio of desired signal power to undesired noise
power.
Noise to signal ratio
Signal to noise ratio
Noise figure
Noise temperature
Amplitude Modulation suffers from
Side-band Suppression
Cross Modulation
Carrier Suppression
Intra-Pulse Modulation
Noise figure is a parameter that represents a of the system.

Option A:	Efficiency
Option B:	Maximum output
Option C:	Noisiness
Option D:	Maximum power handling capacity
opuen 2 :	
Q7.	What is the line connecting the positive and negative peaks of the carrier
~ ''	waveform called?
	wavelolin called?
Option A:	Maximum amplitude ceiling
Option B:	Envelope
Option C:	Peak line
Option D:	Modulation index
Q8.	The ratio between the modulating signal voltage and the carrier voltage is called?
Option A:	Modulation frequency
Option B:	Modulation index
Option C:	Un-modulated peak line
Option D:	Amplitude modulation
Q9.	When does over-modulation occurs
Option A:	Modulating signal voltage =0
Option B:	Modulating signal voltage > Carrier voltage
Option C:	Modulatingsignalvoltage <carriervoltage< td=""></carriervoltage<>
Option D:	Modulating signal voltage = Carrier voltage
Q10.	Calculate the dissipation in power across 20Ω resistor for the FM signal
	$v(t)=20\cos(6600t+10\sin 2100t)$
Option A:	400W
Option B:	5W
Option C:	10W
Option D:	20W
0.1.1	
Q11.	What is the percentage of modulation if the modulating signal is of 7.5V and
	carrier is of 9V?
Option A:	83.33
Option B:	0
Option C:	100
Option D:	91
Q12.	What is the modulation index value if V_{max} =5.9v and V_{min} =1.2v?
Option A:	0.662
Option B:	0.14
Option C:	0.5
Option D:	0.425
option D.	

Q13.	Indicate the false statement regarding the advantages of SSB over double sideband, full-carrier AM
Option A:	Transmitter circuits must be more stable, giving better reception.
Option B:	The signal is more noise-resistant
Option C:	More channel space is available.
Option D:	Much less power is required for the same signal strength
1	
Q14.	Determine the Bandwidth of a FM wave when the maximum deviation allowed is 75KHz and the modulating signal has a frequency of 10KHz.
Option A:	1000 KHz
Option B:	200 KHz
Option C:	100 KHz
Option D:	170 KHz
-	
Q15.	For 100% modulation, total power is?
Option A:	one and half times as the power of unmodulated signal
Option B:	four times as the power of unmodulated signal
Option C:	twice as the power of unmodulated signal
Option D:	same as the power of unmodulated signal
1	
Q16.	The most commonly used filters in SSB generation are
Option A:	RC
Option B:	Mechanical
Option C:	LC
Option D:	low-pass
017	
Q17.	What is the full form of AGC?
Option A:	Active Gain Control
Option B:	Automatic Gain Control
Option C:	Automatic Gain Conversion
Option D:	Audio Gain Control
010	
Q18.	Selectivity measures
Option A:	with two signals close in frequency, the ability to select one and reject other
Option B:	the range of frequencies that receiver can select
Option C:	how well adjacent frequencies are separated in the mixer
Option D:	how well adjacent frequencies are separated by the demodulator
010	Cuard hands are provided in EM signal to
Q19. Option A:	Guard bands are provided in FM signal to To increase bandwidth
Option A: Option B:	Prevent interference from adjacent channels
Option C:	To increase the noise
Option D:	None of the above
Sprind D.	
Q20.	Sensitivity measures

Option A:	strongest signal that is received at the receiver
Option B:	weakest signal that is received at the receiver
Option C:	weakest frequency signal that is received at the receiver
Option D:	strongest frequency signal that is received at the receiver
Q21.	Indicate the false statement in connection with communications receivers.
Option A:	Variable sensitivity is used to eliminate selective fading
Option B:	The noise limiter cuts off the receiver's output during a noise pulse
Option C:	A product demodulator could be used for the reception of Morse code.
Option D:	Double conversion is used to improve image rejection
Q22.	Calculate the minimum sampling rate to avoid aliasing when a continuous time signal is given by $y(t) = 5$ and $400 - t$
Option A:	signal is given by $x(t) = 5 \cos 400\pi t$ 400 Hz
Option B:	250 Hz
Option C:	100 Hz
Option D:	200 Hz
Q23.	Calculate the Nyquist rate for sampling when a continuous time signal is given by
	$x(t) = 5 \cos 100\pi t + 10 \cos 200\pi t - 15 \cos 300\pi t$
Option A:	200Hz
Option B:	300Hz
Option C:	600Hz
Option D:	150Hz
Q24.	In pulse width modulation,
Option A:	Instantaneous power at the transmitter is constant
Option B:	Synchronization is not required between transmitter and receiver
Option C:	Amplitude of the carrier pulse is varied
Option D:	None of the above
Q25.	Which pulse modulation technique is least expensive?
Option A:	Pulse width modulation
Option B:	Pulse amplitude modulation
_	
Option C:	Pulse code modulation